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6.1 Introduction 

6.1.1 Importance of understanding brood rearing
In the context of climate change, understanding how animal popula-

tions are affected by changing environmental conditions is of increasing
importance. This is particularly true in the Arctic where environmental
change is occurring faster than the global average (Kattsov et al. 2005,
Trenberth and Josey 2007). For raptors, the brood rearing period is partic-
ularly sensitive to environmental conditions due to a combination of
nestling vulnerability and increased energetic demands from adults (Daw-
son and Bortolotti 2002, Robinson et al. 2007), and parameters of
breeding success are often used to gauge the vulnerability of populations
to changes in the environment (Steenhof et al. 1997, Vincenzi and Mangel
2013, Anctil et al. 2014, Kasprzykowski et al. 2014). Although nestling sur-
vival is an important and often used parameter, it is binary (either an
individual survives or dies) and simple survival can miss the more subtle
responses exhibited by nestlings. For example, sibling competition may
not result in mortality, but a brood runt—the smallest sibling in a brood—
that survives to fledging will likely grow at reduced rates (Podlas and
Richner 2013, Sofaer et al. 2013). In this case, the unique condition expe-
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rienced by a runt is lost in survival analysis because this individual has sur-
vived and is deemed to have “passed” the brood rearing test. Growth
analysis can provide further insight by showing how well an individual
developed. Not only does this increase the sensitivity of our observations
during the brood rearing period, but because nestling condition and fledg-
ing mass are correlated to future fitness components such as survival
(Lindström 1999, Monaghan 2008, Cam and Aubry 2011, Bowers et al.
2014) and reproductive components such as egg or clutch sizes (Schluter
and Gustafsson 1993, Gorman and Nager 2004, Braasch et al. 2009),
understanding how well individuals develop may lead to a greater under-
standing of how well they will function as adults. 

6.1.2 Introduction to growth analysis 
Growth analysis is the process of regressing body mass, or other biometric

measurements, against age. The shape of this regression, otherwise known
as a growth curve, reflects adaptive evolution to ecological conditions and
is correlated to a number of variables such as adult size, nesting strategy,
brood size, parental foraging strategy, and energy sources (Ricklefs 1968).
This trajectory is sensitive to conditions at the time of development, and a
nestling’s growth curve is therefore reflective of its interaction with the envi-
ronment. As such, studies comparing growth curves within a species have
highlighted how factors such as food availability, weather, brood sex-ratio,
sibling competition, and nest predation risk underlie variation in growth
rates (Ricklefs 1968, Becker and Wink 2003, Pérez et al. 2016). 

Estimating growth curves requires that the mass (or other biometric
measurement) of multiple individuals be measured several times from
hatch through fledging. These weight data are pooled, plotted against age,
and then fitted with a growth model. Birds exhibit sigmoidal growth and
the most commonly used models for this pattern are the logistic, Richards,
Gompertz, and Von Bertalanffy (Gompertz 1825, Winsor 1932, Von
Bertalanffy 1957, Richards 1959, Ricklefs 1968). All of the above models
are parametric equations that, when fitted to growth data, provide param-
eter estimates that are specific to the nature of the curve. For example, like
the name suggests, a three-parameter logistic model is composed of three
parameters: 1) a growth rate constant that indicates the rate at which the
slope changes throughout growth, 2) an inflection point that indicates
the moment of most rapid growth rate and the moment at which growth
rate transitions towards the asymptote, and 3) the asymptote which indi-
cates the final weights reached by the nestlings (Fig. 6.1). By fitting a
growth model and obtaining the parametric values, we gain the ability to
empirically describe and compare the growth rates of nestlings in two
growth rates or populations. We can then use this methodology to inves-
tigate specific research hypotheses regarding nestling growth during the
brood rearing period. 
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To illustrate this technique we use a hypothetical example, and test
whether Gyrfalcon nestling growth differed between two breeding seasons
of sparse and heavy rainfall. In the context of a rapidly changing climate
and projected increases in extreme weather in the Arctic (IPCC Working
Group 1 et al. 2013), we expect that heavy summer rainfall will play an
increasingly prominent role in Gyrfalcon breeding productivity in coming
years (Anctil et al. 2014). Pronounced precipitation can lead to alterations
in the distribution of prey species, lowered food availability, increased
thermoregulatory costs, and adjustments to parental care (Schekkerman
et al. 1998, Robinson et al. 2014, Fisher et al. 2015), and we would expect
to see such impacts represented in the analysis of nestling growth. Here
we use the methodology outlined by Sofaer et al. (2013) to compare
nestling growth between two groups using a simulated data set. Our goal
was to investigate differences in growth between individuals reared in a
year with precipitation amounts below the 30-year average, and individ-
uals reared in a year with precipitation amounts above the 30-year average. 
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Figure 6.1. To display how each parameter affects the growth trajectory, each
example above shows three curves in which two parameters are held constant
and the remaining parameter varies. For instance, in the panel titled ‘growth
rate constant,’ the inflection and asymptote values are fixed, while the growth
rate constant varies from 0.20 to 0.30.



6.2 Analyzing growth of nestlings using non-linear mixed effect
models 

6.2.1 Formatting data
For this example, we simulated a data set that resembles an intense rap-

tor research project in the Arctic. We assumed nestling weights could be
obtained every 5 days, starting at 5 days of age and ending at 30, over a
period of 3 years, and have generated data for 150 individuals from 52
broods. This data set was generated by transforming an existing Peregrine
Falcon (Falco peregrinus) growth data set to resemble Gyrfalcon growth.
Obtaining an equivalent sample size may be difficult considering the logis-
tical issues of field work in the Arctic, but this analysis can be applied to
smaller data sets. The data table, which was saved in comma-separated
value format (.csv), contains all of the variables one needs to model
growth. These variables are nestling ID (unique to each individual), nest
ID, color, sex, year, yearly conditions (0 = wet, 1 = dry), age, and mass.
Considering that this table will be input in to R, it is easiest to create the
data table in long format where each variable is represented as a column,
and each data point is represented as a row (Table 6.1).
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Table 6.1. An example of how the data should be organized. Each column
represents one variable, and each row represents one observation. Nestling
ID’s should be unique for every individual.

ID               NEST      COLOR          SEX          YEAR         COND        AGE         MASS
75r13              31             red                 f               2013              0              27           761
75r13              31             red                 f               2013              0              24           829
75r13              31             red                 f               2013              0              19           631
75r13              31             red                 f               2013              0              15           492
75r13              31             red                 f               2013              0              10           221
76b14              31             red                 f               2013              0                5             76
76b14              72             red                 f               2013              0              29           793
76b14              72             red                 f               2013              0              22           640
76b14              72             red                 f               2013              0              15           258
76b14              72             red                 f               2013              0                8             91
76b14              72             red                 f               2013              0                2             36
77b14                8             red                 f               2013              0              30           920
77b14                8             red                 f               2013              0              24           867
77b14                8             red                 f               2013              0              16           550
77b14                8             red                 f               2013              0                9           218



6.2.2 Introduction to the model
Because Gyrfalcons exhibit reverse sexual size dimorphism, each sex is

modeled separately using three-parameter mixed effects logistic models by
means of the nlme package (Pinheiro et al. 2016) in R (R Core Team 2016)
where wt = mass at time t (g), A = asymptotic mass (g), K = growth rate
constant, I = inflection point of the growth curve (days), and t = nestling
age (days).

Variation in nestling growth may be consistent at hierarchical levels, and
we can improve the fit of our model by adding random effects (Sofaer et
al. 2013). For example, due to similar levels of parental care, asymptotes
may be similar among siblings. We can account for this by adding a nest
level random effect to the asymptote parameter. Because we initially do
not know to what degree, and on which parameter(s), our nestlings show
consistent growth, it is necessary to evaluate a number of different random
effect structures. We do this by building a set of candidate models that
apply one or two random effects to one or more of the parameters. In this
example data set, we expected to see two levels of consistent variation and
include nest (Ai, Ki, and Ii), and nestling level random effects (Aij, Kij, and
Iij) in the candidate models. By doing so, we will account for 1) shared
genetic backgrounds and common levels of parental care between siblings,
and 2) repeated measurements on individuals.

Ultimately we want to investigate differences in growth between wet and
dry years. We can achieve this by including a fixed “wet year” (i.e., Xcon)
effect that denotes the year in which an individual was reared (wet = 0, dry
= 1). By adding this effect to each of the three parameters, we can deter-
mine if the parameters significantly changed from dry to wet years, and to
what degree they changed. 
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wt =                        + eA             
1 + e ((K)(I+t))          

wijk =                                         +  eijk
A + Ai + Aij

1 + e ((K+Ki+Kij)(I+Ii+Iij+tijk))

wijk =                                                +  eijk
A + Ai + Aij + Acon

1 + e ((K+Ki+Kij+Kcon)(I+Ii+Iij+Icon – t))



6.2.3 Model fitting in R
The first step in analysis is to assign the logistic function and the deriv-

ative of this function to objects. We create a logistic function for growth
called parm_diff, which includes a fixed effect for each parameter (Kdiff,
middiff, Adiff) that denotes whether the individual was raised in a wet or
dry year. If this fixed “condition” effect significantly changes between wet
and dry years, the estimate associated with this fixed effect estimate will
have a P-value < 0.05.

# create parm_diff: a logistic function for growth
parm_diff = function(AGE, COND, Asym, xmid, K, Kdiff,

middiff, Adiff){(Asym + Adiff * COND) / (1 +
exp(((xmid + middiff * COND) - AGE) * (K+Kdiff*COND)))

}
# p.diff_Deriv derives the logistic function above
# (parm_diff)

p.diff_Deriv = deriv(body(parm_diff)[[2]], namevec =
c(“Asym”, “xmid”, “K”, “Kdiff”, “middiff”, “Adiff”),
function.arg = parm_diff)

The way R arrives at the best fitting model (i.e., the parameter values
within the logistic equation that best fit the growth data) is by sequentially
working through potential parameter values. To prevent errors and endless
searching, we can assign parameter “start values” that we believe, based on
experience, are within the range of normal values. R will then use these start
values as guidance, and search within the proximity of the start values.

# start values for males (PEFA)
startmal = c(Asym = 700, xmid = 3, K = .05, Kdiff = 0,

middiff = 0, Adiff = 0) 

# start values for females (PEFA)
startfem = c(Asym = 700, xmid = 3, K = .05, Kdiff = 0,

middiff = 0, Adiff = 0) 
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With a derived logistic function and approximate parameter values, we
can start fitting models to our data. For this process, we fit a number of
candidate models that incorporate different random effects structures, and
determine which random structure is most parsimonious with regard to
describing nestling growth within our population. Here is an example
model for the males that incorporates a nest-level random effect on the
asymptote. This model is therefore accounting for similar asymptote values
within each brood due to genetic and parental care similarities among sib-
lings. Note that we use the dataframe growth_mal which is the subset of
the data containing only males. We also rounded some of the output for
simplicity. See the online code for this chapter for more details.

# model with NEST-level random effect on the ASYMPTOTIC
# MASS

r.n_f.a._males = nlme(WEIGHT ~ p.diff_Deriv
(AGE, COND, Asym, xmid, K, Kdiff, middiff, Adiff),
fixed = Asym + xmid + K + Kdiff + middiff + Adiff ~ 1,
random = Asym ~ 1 | NEST, data = growth_mal, start =
startmal)

# returns a summary of the model
summary(r.n_f.a._males)

Examining the summary output, we see the following: 

Nonlinear mixed-effects model fit by maximum likelihood
Model: WEIGHT ~ p.diff_Deriv(AGE, COND, Asym, xmid, K,

Kdiff, middiff, Adiff) 
Data: growth_mal 

AIC      BIC    logLik
5563.907 5597.026 -2773.953

Random effects:
Formula: Asym ~ 1 | NEST

Asym     Residual
StdDev: 88.65756 89.83508
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Fixed effects: Asym + xmid + K + Kdiff + middiff + Adiff ~ 1 
Value      Std.Error   DF     t-value    p-value

Asym     1142.56    25.63       429    44.58      0.00
xmid     13.35      0.28        429    49.85      0.00
K        0.22       0.01        429    19.97      0.00
Kdiff    0.01       0.01        429    0.77       0.44
middiff -0.17       0.33        429   -0.51       0.61
Adiff    71.72      25.80       429    2.78       0.01
Correlation: 

Asym     xmid      K        Kdiff     middff
xmid     0.549                            
K       -0.498   -0.519                     
Kdiff    0.404    0.416   -0.800              
middiff -0.451   -0.814    0.422    -0.512       
Adiff   -0.611   -0.536    0.489    -0.623     0.688

Standardized Within-Group Residuals:
Min        Q1        Med       Q3        Max 
-5.65e+00 -4.23e-01  6.85e-05  5.74e-01  5.28e+00 

Number of Observations: 464
Number of Groups: 30 

This represents one model fitting, thus, we refrain from making conclu-
sions about differences in growth between treatment groups until it
becomes clear which random effect structure best fits our growth data, but
all the needed information can be seen in this summary. For this particular
model, we can see the values associated with each parameter in the “Fixed
Effects” section. For example, a typical male (median) reached an asymp-
tote (Asym) of 1142.6 grams ± 25.6, was inflecting (xmid) at 13.3 days of
age ± 0.3, and had a growth rate constant (K) of 0.22 ± 0.01.  No signifi-
cant differences were found between wet and dry years in regards to the
growth rate constant and inflection point (p = 0.4 and 0.6 respectively),
but the asymptote values increased significantly by 71.7 grams in years of
less precipitation (p = 0.006). Model fit diagnostics appear at the top (AIC,
BIC, and Log Likelihood) and we use these to rank the candidate models.
To complete this analysis, one should run the full set of candidate models
to find the one of best fit, and then examine the significance of the fixed
condition effects within that model. For more examples of models with
varying random effect structures see the code for this chapter online.

All the information needed to make conclusions about nestling growth
is in the model output, but it helps if we can visualize growth between wet
and dry conditions (Fig. 6.2). This visualization helps us understand
exactly how changes in growth parameters affect the overall growth curve.
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# manually save the parameter estimates to objects (values
# obtained from model summary)

Asym_est    =  1142.557
xmid_est    =  13.3460
K_est       =  0.2242
Kdiff_est   =  0.0109
middiff_est = -0.1663
Adiff_est   =  71.7208

# create a matrix of the model’s variance covariance
sigma = matrix(vcov(r.n_f.a._males), nrow = 6, ncol = 6)

# vector of ages spanning 0 to 35 days
age_vec = seq(0, 35, by = 1)
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Figure 6.2. A visualization of growth in male Gyrfalcons across wet and dry
years where asymptotes varied randomly across nests. In this model, only
asymptotes changed significantly across conditions (p = 0.006).



# growth in wet conditions
Mass_wet = Asym_est / (1 + exp((xmid_est - age_vec) *

K_est))

# growth in dry conditions
Mass_dry = (Asym_est + Adiff_est)/(1 +

exp(((xmid_est+middiff_est) - age_vec) *
(K_est+Kdiff_est)))

# treatment 
wet = 0
dry = 1

# standard error for growth in wet conditions
se_wet.mass = sqrt(deltavar((Asym_est + Adiff_est * wet)/

(1 + exp(((xmid_est + middiff_est * wet) -
age_vec) * (K_est + Kdiff_est * wet))), meanval =
c(Asym_est = Asym_est, xmid_est = xmid_est, K_est =
K_est, Kdiff_est = Kdiff_est, middiff_est =
middiff_est, Adiff_est =
Adiff_est), Sigma=sigma ))

# calculate upper and lower confidence intervals from the SE
# for growth in wet conditions

wet_ucl = Mass_wet + 1.96 * se_wet.mass
wet_lcl = Mass_wet - 1.96 * se_wet.mass

# standard error for growth in dry conditions
se_dry.mass = sqrt(deltavar((Asym_est + Adiff_est *

dry) / (1 + exp(((xmid_est+middiff_est * dry) -
age_vec) * (K_est+Kdiff_est * dry))), meanval =
c(Asym_est = Asym_est, xmid_est = xmid_est, K_est =
K_est, Kdiff_est = Kdiff_est, middiff_est =
middiff_est, Adiff_est = Adiff_est), Sigma=sigma ))

# calculate upper and lower confidence intervals from the SE
# for growth in dry conditions

dry_ucl = Mass_dry + 1.96 * se_dry.mass
dry_lcl = Mass_dry - 1.96 * se_dry.mass
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# plot the curves
graphics.off()
windows(4.5,4.5)
par(mgp = c(1.5,0.5,0))
plot (age_vec, Mass_wet, type = “n”, cex.lab = 0.6,

cex.axis = 0.75, xlab = “Age (days)”, tck = 0.01,
font.lab = 2,ylab = ‘Weight (g)’, las = 1, ylim =
c(0,1500), xaxs = “i”, yaxs = “i”, bty = “l”, 
cex.lab = 1,axes=T)

lines(age_vec, Mass_wet, lty = 1, lwd = 1, col =
rgb(0.1,0.1,0.8,1))

lines(age_vec, wet_ucl,  lty = 2, lwd = 1, col =
rgb(0.1,0.1,0.8,0.5))

lines(age_vec, wet_lcl,  lty = 2, lwd = 1, col =
rgb(0.1,0.1,0.8,0.5))

lines(age_vec, Mass_dry, lty = 1, lwd = 1, col =
rgb(0,0,0,1))

lines(age_vec, dry_ucl,  lty = 2, lwd = 1, col =
rgb(0,0,0,0.5))

lines(age_vec, dry_lcl,  lty = 2, lwd = 1, col =
rgb(0,0,0,0.5))

points(growth_mal$WEIGHT[growth_mal$COND==0]~
growth_mal$AGE[growth_mal$COND==0], pch = 19,col =
rgb(0.1,0.1,0.8,0.2),cex = 0.2)

points(growth_mal$WEIGHT[growth_mal$COND==1]~
growth_mal$AGE[growth_mal$COND==1], pch = 19,col =
rgb(0,0,0,0.2), cex = 0.2)

legend(25,600, bty = “n”, legend = “Dry”, text.col =
rgb(0,0,0,1),cex = 0.75)

legend(28,525, bty = ”n”, legend = “a = 1,214”,cex = 0.5)
legend(28,475, bty = “n”,legend = “i  = 13.46”, cex = 0.5)
legend(28,425, bty = “n”,legend = “k = 0.23”, cex = 0.5)
legend(25,350, bty = “n”, legend = “Wet”, text.col =

rgb(0.1,0.1,0.8,1),cex = 0.75)
legend(28,275, bty = “n”, legend = “a = 1,142”, text.col =

rgb(0.1,0.1,0.8,1),cex = 0.5)
legend(28,225, bty = “n”, legend = “i  = 13.35”, text.col =

rgb(0.1,0.1,0.8,1),cex = 0.5)
legend(28,175, bty = “n”, legend = “k = 0.22”, text.col =

rgb(0.1,0.1,0.8,1),cex = 0.5)
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Once completed in full, this analysis will provide us with detailed infer-
ence on how nestling growth changes across years of varying precipitation.
We chose precipitation as our variable of comparison due to the predicted
increases in extreme Arctic weather and the documented effects of heavy
rainfall on raptor breeding productivity (IPCC Working Group 1 et al.
2013, Anctil et al. 2014, Fisher et al. 2015), but any two-level variable could
be used in its place (i.e., growth between two different populations or
growth in years of differing prey abundance; see Chapter 8 this volume). 
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