Home range estimation:

examples of estimator effects

Mathieu Tétreault and Alastair Franke

Tétreault, M., and A. Franke. 2017. Home range estimation: examples of estimator
effects. Pages 207-242 in D.L. Anderson, C.J.W. McClure, and A. Franke, editors.
Applied raptor ecology: essentials from Gyrfalcon research. The Peregrine Fund, Boise,
Idaho, USA. https://doi.org/10.4080/are.2017/011

Introduction

In the 19th century Darwin (1861) noted that animals tended to restrict
their movements to a defined area, but the accepted definition of home
range as an area regularly traversed by an individual for activities of food
gathering, mating, and caring for the young, but excluding occasional sal-
lies outside this area, was not formally described until much later (Burt
1943). Within a home range, animals demonstrate a certain familiarity
with the area; they know the locations of principal shelters, resources,
potential mates, and escape routes. Hence, home range can be viewed as
the interaction between the environment and an animal’s understanding
of that environment; in essence, a cognitive map (Powell and Mitchell
2012). “Home range behavior” is the product of decision-making and the
contribution of spatially distributed resources to an individual’s fitness
(Mitchell and Powell 2012), meaning that an animal is expected to use the
minimum area that can sustain its energetic requirements (Harestad and
Bunnel 1979). Although home range estimation methods are mathemat-
ical and statistical in nature, researchers attempting to understand the
mechanistic and biological foundations of home range should keep in
mind that an animal’s home range reflects its requirements and decisions
to fulfill those requirements. As a result, home ranges will differ among
species, individuals within a species, and even within individuals over time
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(Powell and Mitchell 2012) depending on shifting needs and changing
resources. This variation in home range characteristics (i.e., size, shape,
location, overlap) is related to intrinsic and extrinsic factors, such as body
size-dependent metabolic needs (McNab 1963, Harestad and Bunnel 1979,
Lindstedt et al. 1986), age and sex (Mech 1980, Cederlund and Sand 1994,
Larter and Gates 1994), population density (Kilpatrick et al. 2001, Kjellan-
der et al. 2004), habitat quality (Watson 2002, Campioni et al. 2013), food
availability (Simon 1975, Jones 1990), environmental variability (Rivrud
et al. 2010, Morellet et al. 2013, Kowalczyk et al. 2015), diet (Milton and
May 1976, Rigamonti 1993, Zabel et al. 1995, Peery 2000), and breeding
stage (Erikstad 1985, Vega Rivera et al. 2003, Beltran et al. 2010, van Beest
et al. 2011). Because interactions among these factors and habitat-use are
dynamic, home range estimates should be interpreted as a “snapshot,” and
are thus a useful tool for predicting future home range characteristics
under similar conditions.

Raptors can provide valuable insight into the effect of these factors on
an animal’s home range characteristics because raptor species vary consid-
erably in body size (Ferguson-Lees and Christie 2001), diet (Korpimaki
and Marti 1995), and foraging behavior (Peery 2000). Breeding raptors are
central place foragers (Orians and Pearson 1979); thus breeding season
movements are dictated by the distribution of food resources (prey) that
must be carried back to the nest (the central place) to feed nestlings. As a
consequence, home range configuration is, in part, determined by prey
abundance and habitat quality (Marquiss and Newton 1982, Village 1982,
Bloom et al. 1993, Marzluff et al. 1997, Lapointe et al. 2013). Thus, home
range size and configuration can capture important movement patterns
among individuals that results from the juxtaposition of nesting territories
and the spatial distribution of prey. A “nesting territory” is the part of a
bird’s home range that is defended against conspecifics (Odum and Kuen-
zler 1955), and is therefore a sub-unit of the home range characterized by
agonistic behaviors.

Arctic-nesting raptors play a key role in tundra ecosystems as top pred-
ators, but studying them remains a challenge, in part because of their
remote location (Sokolov et al. 2014). Further, Arctic raptors are often
dependent on highly fluctuating food resources (Mindell et al. 1987, Gilg
et al. 2009, Barichello and Mossop 2011), and changes in prey abundance
or distribution can have important consequences on Arctic ecosystem food
webs. Climate change has occurred more rapidly in Arctic ecosystems
(Stocker 2014). Landscapes have been modified as a result (Hinzman et al.
2005), affecting primary productivity (Sturm et al. 2001) and population
dynamics (Post et al. 2009). The study of home ranges of key species of
Arctic ecosystems, such as the Gyrfalcon, can potentially provide insight
into the way in which these species modify foraging behavior in response
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to a changing environment. Further, breeding opportunity, food abun-
dance, and favorable environmental conditions in the Arctic occur during
a brief period of time each breeding season, making it an interesting region
to examine the temporal dynamics of home ranges.

Koskimies (2011) indicated that future studies on Gyrfalcons should
focus on identification of environmental factors that limit density, includ-
ing habitat use and home range. Since then, few studies have investigated
Gyrfalcon home range (Burnham and Newton 2011, Eisaguirre et al. 2016).
Although mean home range (95% kernel) size of breeding female Gyrfal-
cons varied considerably among individuals within a given population, it
was similar across populations in Yukon Territory, Canada (mean = 421
km?, n = 2, range = 284-758 km?; Eisaguirre et al. 2016) and in Greenland
(mean = 457 km?, n = 6, range = 88-829 km? Burnham and Newton
2011). These results highlight the importance of using the same home
range estimation methods when the goal is to make comparisons among
studies. Using standardized approaches to study and characterize home
ranges should improve our understanding of the effects of environmental
factors on Gyrfalcon behavior and fitness.

The methods and interpretations highlighted in this chapter can be
applied broadly to most raptor species. We focus on estimating breeding
home range using three different approaches that produce different out-
puts from the same data set. Here we highlight: 1) Kernel Density Estimate
(KDE), 2) Local Convex Hull (LoCoH), and 3) Biased Random Bridge
(BRB). For migratory species, these estimation techniques can be applied
similarly to wintering home ranges.

Data collection

Our understanding of factors that influence home range is, in large part,
due to rapid advances in telemetry technology (Cagnacci et al. 2010) and
analytical techniques. Although a wide range of animal tracking devices
are readily available, the advantages and drawbacks of each type of device
must be considered within the context of the research question (Robinson
et al. 2010). Researchers must consider the tradeoffs among several fac-
tors: number of locations that can be collected daily (i.e., fix frequency),
the precision of the locations, the weight and dimensions of the devices,
and the human resources required to obtain a location. For example,
geolocators are lightweight devices that estimate location using a light
sensor to calculate day length and solar noon (Wilson et al. 1992, Lisovski
et al. 2012). Geolocators are widely used to track long distance migration
of seabirds and passerines because they are cost-effective and small
(Burger and Shaffer 2008, Stutchbury et al. 2009). However, they are
much less accurate and collect fewer daily fixes compared to other device
types (one or two locations per day; mean error 185-200 km; Phillips
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2004). They are excellent for answering broad scale questions where fine
scale accuracy is not required, but cannot provide the accuracy required
for home range studies.

Very High Frequency (VHF) radio transmitters and satellite/cellular
transmitters equipped with an onboard Geographical Positioning System
(GPS) provide data that are sufficiently accurate (Robinson et al. 2010) for
estimating home ranges. VHF transmitters have the advantage of being
lightweight and are small (0.5 g), but the technology is reliant on field
technicians working to continuously relocate marked individuals on foot,
by automobile, or aircraft (Seegar et al. 1996, Thorup et al. 2007), and
then estimating location by direct observation or triangulation, which can
also be inaccurate. Solar powered GPS Platform Terminal Transmitters
(PTTs) and Global System for Mobile (GSM) loggers are light (17-25 g for
the smallest devices), and can be deployed on raptors in the size range of
Gyrfalcons and most other large raptor species (according to the < 3% of
body weight standard suggested by Bird Banding Laboratory; USGS 2016).
Note, however, the increasing concerns with regard to negative effects of
backpack-style transmitters on adult and juvenal Gyrfalcons (McIntyre et
al. 2009, Fuller et al. 2011, Eisaguirre et al. 2016). We suggest, as recom-
mended by Steenhof et al. (2006), that researchers carefully consider and
minimize the effects of radio marking falcons to ensure that any benefits
gained from the study will outweigh costs to individual animals. Further
research on Gyrfalcon home range and movement should take advantage
of future developments in tracking technology and attachment methods
to avoid negative effects on Gyrfalcons (Eisaguirre et al. 2016).

The main advantage of GPS-accurate (+18 m for GPS-PTTs and +3 m
for GSM loggers) devices for home range studies is the capacity to collect
multiple locations per day, in addition to options for programming diur-
nal and seasonal relocation schedules. Moreover, batteries often have
sufficient capacity to track an individual for more than one annual cycle.
Because of the high cost of these devices (typically between $1350 and
$4200 in 2017), studies that have tracked raptors rarely deployed trans-
mitters on more than 10 individuals (e.g., Strandberg et al. 2009, Fuller
et al. 2011, Duerr et al. 2012, Lanzone et al. 2012, Lapointe et al. 2013,
Sokolov et al. 2014). Note that Argos-PTTs have larger error around loca-
tions than GPS-PTTs. Argos location data are based on the Doppler effect
and location points are of variable quality, with Argos error estimate
being <250 m in the best of cases (CLS 2016). Interpretations based on
relatively small sample sizes must be made carefully because extensive
data on a few individuals may not be generalizable to the population
(Fieberg and Borger 2012).

The number of locations required to reliably estimate home range
depends on the range estimator. For non-parametric kernel estimators



Home range estimation

(discussed below), Seaman et al. (1999) suggest a minimum of 30 fixes,
and preferably > 50. For minimum convex polygon (MCP), Bekoff and
Mech (1984) suggested that the minimum sample size should be between
100 and 200 fixes. Sampling regime (i.e., number of locations/days) is
therefore an important consideration. If a tracking device collects only one
location per day over a short period of time (e.g., breeding season), the
resulting data may be inadequate to reliably estimate a home range. We
feel that four fixes per day provides adequate home range estimates for
large Arctic breeding falcons and should prevent the negative effects of
small sample size on home range estimation (Bekoff and Mech 1984),
particularly if estimates of within-season home range estimation are
important (e.g., use of space during discrete time periods such as pre-lay-
ing, incubation, or brood rearing).

Estimating home range

Choice of home range estimation method can explain as much of the
variation in home range size as the ecological variables affecting it (Nilsen
et al. 2007), thus selection of the optimal home range estimator should
consider the question of interest (Table 11.1). For example, MCPs are con-
sidered inadequate by many (Burgman and Fox 2003, Borger et al. 2006,
Laver and Kelly 2008), but the approach is easy to understand and can be
applied for comparative purposes (e.g., Kjellander et al. 2004, Herfindal
et al. 2005, van Beest et al. 2011, Williams et al. 2011, Sokolov et al. 2014).
However, overestimation of home range size remains a major drawback
associated with MCPs (Burgman and Fox 2003). On the other hand,
although the ability for frequent collection of many fixes has improved
considerably in recent years, in cases where fixes are collected over short
time periods, successive locations may not be statistically independent
(i.e., auto-correlated). Several estimators have been developed to account
for auto-correlation among relocations (Walter et al. 2011, Walter et al.
2015). Among these are the local convex hull (LoCoH; Getz and Wilmers
2004, Getz et al. 2007), the single-linkage cluster (SLCA; Kenward et al.
2001), characteristic hull (CHAR; Downs and Horner 2009), kernel den-
sity estimator (KDE; Worton 1989), Brownian bridge (BB; Horne et al.
2007), and biased random bridge (BRB; Benhamou 2011). Thus, the
choice of home range estimator should align with study objectives
(Fieberg and Borger 2012), and consider the limitations inherent to the
estimator (Table 11.1). In an extensive review of home range studies,
Laver and Kelly (2008) indicated that studies involved in estimating
home range often used sub-optimal methods and lacked sufficient infor-
mation to reproduce them.

In the following section, we define the term utilization distribution
(UD), demonstrate the use of three UD-based estimators (KDE, LoCoH,
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Table 11.1 An overview of the advantages and drawbacks of most popular and
pertinent home range estimation methods as well as their principal utility.

Home range estimator Advantage(s)
Minimum convex Very simple to use. Free of distributional assumptions.
polygon (MCP)"2 Widely used; many comparable studies.

Kernel density estimators (KDE)**> Free of distributional assumptions (non-parametric).
Flexible method; can be used in many situations.

Local convex hull (LoCoH)%” Produce consistent results with different sampling
regimes. Convergence to true distribution as sample
size increase. ldentify unused area within a home range.

Brownian bridge (BB)® Accounts for time and distance between locations.

Biased random bridge (BRB)’ Accounts for time and direction between locations.
Smoothing parameters can be estimated from the data.
Works well with serially correlated relocations.

References: 1) Hayne1949, 2) Powell 2000b, 3) Worton 1989, 4) Kernohan et al. 2001,
5) Seaman and Powell 1996, 6) Getz and Wilmers 2004, 7) Getz et al. 2007,
8) Horne et al. 2007, 9) Benhamou 2011

and BRB), and show how the choice of estimator can produce markedly
different results. We used simulated data based on known movement pat-
terns of an adult breeding female Peregrine Falcon (Falco peregrinus)
equipped with a 22-g solar-powered PTT 100 (Microwave Telemetry Inc.,
Columbia, Maryland). The data set is restricted to a 30-day period (n = 323
locations) during the brood rearing period to characterize foraging behav-
ior consistent with that observed for an Arctic-nesting falcon raising young.

A data set capable of estimating home range using the three methods
illustrated in this chapter should contain the following fields: 1) Locations;
must be two columns for both x and y positions (locations in this example
are in Universal Transverse Mercator (UTM) coordinate system, but lati-
tude and longitude could also be used); 2) Date and time; should be
merged for transformation from successive point locations to trajectory
between locations; 3) UTM zone (required only if the UTM coordinate sys-
tem is used). This will be necessary to set a projection to the resulting
home range estimates (See Table 11.2).



Drawback(s)

Crude outlines. Sensitive to extreme

locations. Ignores all information provided by interior
locations. Tends to overestimate home range. Sensi-
tive to sample size before ~100 locations.

Sensitive to bandwidth choice.
Assumption of independence.

Sensitivity of the user-selected nearest-number-of-
neighbors parameter, k.

Requires short time interval between

locations. Assumption of diffusive movement.Tends
to overestimate areas where animal is immobile for
long periods.

Requires short time interval between locations.

Home range estimation

Utility
Comparative studies. Habitat
selection.

Analyze use of space by pro-
ducing bounded UDs.

Consider hard boundaries
within the habitat. Habitat
selection.

Includes principal movement
corridors and hard bound-
aries in home range
estimation.

Includes principal movement
corridors and hard boundaries
in home range estimation.

Table 11.2 Example of the data set required to estimate home range using
kernel density estimate, local convex hull and biased random bridge
methods. Each row is a Global Positioning System fix and each column is a
variable. There is no ID field in this example because the table contains only
re-location from a single individual. The coordinates (xcoo and ycoo) are
given in Universal Transverse Mercator. Date (named “hour” in the data set)

format is year-month-date hour:min:sec.

XCoo
481036.11513
481031.192258
481031.192258
481037.791804
481024.592712
481031.192258

ycoo

7801896.82561
7802287.31069
7802287.31069
7802287.17726
7802287.44414
7802287.31069

hour utmzone
2010-07-31 14:00:00 17N
2010-07-31 16:00:00 17N
2010-07-31 18:00:00 17N
2010-07-31 20:00:00 17N
2010-07-31 22:00:00 17N
2010-08-01 00:00:00 17N
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Utilization distribution

The utilization distribution (van Winkle 1975) is an extension of the
home range concept first described by Burt (1943), and describes an ani-
mal’s use of space as a probability density function that characterizes the
chance that an animal will be found in any given location within the
region defined as its home range. UDs are commonly represented by iso-
pleths delineating regions in space with differing probabilities (or rates)
of use. In turn, home ranges are typically depicted as the 95% isopleth of
an unbounded UD, meaning that some relocations are excluded from the
estimated home range. These excluded locations could be considered
those that Burt (1943) referred to as occasional sallies outside the home
range. The difficulty for those interested in estimating home range is selec-
tion of an estimator that properly excludes locations that are truly sallies
beyond the bounds of a home range. Thus, selection of the appropriate
estimator is critical to characterizing which points should be considered
representative of an animal’s exploratory movements, and which should
be considered routine movements necessary for foraging and reproduction
(Getz et al. 2007). Regardless of which home range estimator is used, it is
important to remember that any illustration of an individual’s home range
is an approximation of an animal’s use of space that is not constrained by
fixed boundaries (Powell 2000).

Kernel density estimate (KDE)

Worton (1989) described a kernel method for the estimation of UDs
from relocations of an animal. The approach recognizes that over time,
places within an individual’s home range that are used repeatedly (e.g., a
nest site) accumulate many more fixes than places that are used rarely.
Thus, the density of fixes within the vicinity of a nest site, for example,
would be high, and the density of fixes in a rarely used location would be
low. However, calculating an estimate of use depends on the form (i.e.,
shape and width) of the kernel, and this can pose a problem because sev-
eral different kernel options are available (e.g., fixed versus adaptive,
univariate versus bivariate bandwidth; Worton 1989, Seaman and Powell
1996). In general, kernel shape has little effect on output, but differences
in bandwidth can result in markedly different outputs. It should come as
no surprise that home range estimates depend on the kernel bandwidth
(i.e., smoothing parameter h; Walter et al. 2011), and that comparisons of
home range estimates among studies should take into consideration the
form of the smoothing parameter (Kernohan et al. 2001).
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Table 11.3 Principal R packages and functions used to estimate home range
using kernel density estimate.

Package Function Utility
ks' Hpi Univariate plug-in selector
kde Kernel density estimator to build UD

contourLevels  Extraction of the home-range contours (isopleths)
/contourLines

adehabitatHR?  kernelUD Kernel density estimator to build UD

getverticesHR  Extraction of the home-range contours (isopleths)

Rgeos?® gArea Calculate area of estimated home range

References: 1) Duong 2016, 2) Calenge 2011, 3) Bivand and Rundel 2017

First generation smoothing methods include reference (h,,) and least
square cross validation (hy,,; Walter et al. 2011). The reference method has
been criticized for over-smoothing, resulting in UDs that overestimate the
spatial extent of an animal’s home range. Although least squares cross val-
idation (Iscv) may minimize over-smoothing, Walter et al. (2011) point out
that the approach has been poorly evaluated using high resolution GPS
data. In addition, Iscv presents convergence problems when datasets are
large, and fixes are clumped, both of which are likely in data sets collected
on breeding raptors. The plug-in (h,;) method (Jones and Kappenman
1992), which was developed after the reference and Iscv methods, provides
better convergence and reasonable trade-offs between bias and variance
(Jones et al. 1996, Duong and Hazelton 2003). However, the plug-in
method can produce renditions of home ranges that appear fragmented.
Thus, the choice of kernel method must consider the research question
and the manner in which home range outputs will be interpreted (Worton
1995). The principal R packages and functions (R core team 2016) used to
estimate home range using kernel density estimates are shown in Table
11.3 (see Calenge (2011) for more details).
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11.3.2.1 Estimating home range using KDE

Once we load the data into R, naming it ‘loca’, we set the format for date
and time. Although this is not mandatory for KDE, it will be necessary for
BRB to account for time and direction between successive locations.

# set the right date/hour format
loca$time = as.POSIXct(strptime(loca$time,
format = ‘%Y-%m-%d %H:%¥M:%S'))

Now we attempt to estimate a 95% KDE home range first using h;,, to
illustrate problems with convergence, and follow-up using h,,

# try using hlscv
kernLSCV<-kernelUD(SpatialPoints(loca[, 1:2]), h = “LSCV")

We get a warning about convergence. Even by increasing hlim (i.e., the
limit of the smoothing parameter, or bandwidth), the algorithm will not
converge. We can illustrate that using the function plotLscv as follows:

# plot kernLSCV
plotLSCV (kernLSCV)

The plot (not shown) illustrates that the cross validation criterion (CV)
cannot be minimized here (because the CV values continue to rise as h
increases), which is the goal of LSCV function. Let's try with h,,sbandwidth
selector:

# try using href
kernhref<-kernelUD(SpatialPoints(loca[, 1:2]), h = “href”)

With h,,¢, the algorithm converges, so now we can estimate and plot
(not shown) the 95% isopleth of the UD.

# estimate and plot the 95% isopleth
kernhref <- getverticeshr(kernhref, percent = 95)
plot (kernhref)
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We can also calculate the area of the 95% isopleth using the function
gArea, which returns the area in m?.

# calculate the area of the 95% isopleth
gArea(kernhref)
# output
514881400

Second-generation bandwidth selectors such as the plug-in method are
thought to reduce problems associated with non-convergence. We will esti-
mate home range using KDE, but this time using the plug-in method for
smoothing hpi (using the R package ks). We will also illustrate how to
build the gradient of use across the home range. The algorithm that defines
the smoothing parameter (h) is a function of unknown target density.
Hence, a pilot value is required to find the optimal smoothing parameter.
This can be achieved by estimating the bandwidth that minimizes the
Asymptotic Mean Squared Error (AMSE pilot; Wand and Jones 1994), the
Sum of Asymptotic Mean Squared Error (SAMSE pilot; Duong and Hazel-
ton 2003), or by using a single unconstrained bandwidth (unconstr pilot)
or higher derivative order bandwidths (dunconstr and dscalar pilots;
Chacén and Duong 2010).

# find PlugIn parameter value with Hpi
# choose between 4 different “pilots”

hl = Hpi(loca[,1:2], pilot = ’'samse’, binned = T)
h2 = Hpi(loca[,1:2], pilot = ‘unconstr’, binned = T)
h3 = Hpi(loca[,1:2], pilot = ’‘dunconstr’, binned = T)
h4 = Hpi(loca[,1:2], pilot = ’‘amse’, binned = T)

We get similar results from SAMSE and AMSE, as well as unconstr and
dunconstr. So, we estimate home range using KDE with hy,; using only
SAMSE and unconstr pilots (Fig 11.1).

# hpi with samse pilot

kernPIl <- kde(loca[,1:2], H = hl)

cont = contourLevels(kernPIl, cont = 95)

line = contourLines(x = kernPIl$eval.points[[1l]], ¥y =
kernPIl$eval.points[[2]], z = kernPIl$estimate,
level = cont)

sldf = ContourLines2SLDF(line)

plot(sldf)
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# convert contour lines into polygons to calculate area
# ignore warning, no need to define coordinate system for now
sldf SpatialLines2PolySet(sldf)
sldf = PolySet2SpatialPolygons(sldf)
gArea(sldf)
# output
58015136

# hpi with unconstr pilot

kernPI2 <- kde(loca[,1:2], H = h2)

cont = contourLevels(kernPI2, cont = 95)

line = contourLines(x = kernPI2$eval.points[[1l]], y =
kernPI2$eval.points[[2]], 2z = kernPI2$estimate,
level = cont)

sldf = ContourLines2SLDF(line)

plot(sldf)

# convert contour lines into polygons to calculate area
# ignore warning, no need to define coordinate system for now
sldf SpatialLines2PolySet(sldf)
sldf = PolySet2SpatialPolygons(sldf)
gArea(sldf)
# output
169848862

We now plot the UD within the home range using KDE and hpi with
SAMSE pilot. Various methods allow the illustration of UD from reloca-
tions, but our method consists of creating several different polygons
(isopleths) and successively overlaying each isopleth as part of the plotting
process. One advantage of this method is that the resulting home ranges
of different isopleths are independently estimated, and can be imported
easily into a Geographic Information System (GIS). The first step is to cre-
ate the home ranges from different isopleths (e.g., 50% to 95%). Because
of the high density of points around a nest, the algorithm sometimes can-
not draw a polygon for 50% isopleth. If this is the case (Contour Lines
[CL] too short), start with higher (55% or 60%).

# first create list of polygons of different isopleths
SPDF = list()
Levels = seq(95,50,by = -2.5)
for (j in 1 : length(levels)){
cat(3j,”\n")
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# extract every isopleth (contour line) of level j
cont = contourLevels(kernPIl, cont = levels[]])
line = contourLines(x = kernPIl$eval.points[[1]],
y = kernPIl$eval.points[[2]], z = kernPIl$estimate,
level = cont)
sldf = ContourLines2SLDF(line)

# set projection (UTM) for polygons
utm = names(sort(table(as.character(loca$utmzone)))[1l])
utm = gsub(’N|S’, ‘", toupper(utm))

projé4string(sldf) = CRS(paste(“+ proj = utm +zone =", utm,
“ +4+datum = NAD83 + ellps.default GCs”, sep = '"))

# convert contour lines into polygons
sldf = SpatialLines2PolySet(sldf)
sldf = PolySet2SpatialPolygons(sldf)

# list of every polygons made with each contour level
SPDF[[j]] = sldf
names (SPDF)[j] = levels[j]
}

We can then overlap all the polygons within a single plot to visualize
use of space within the 95% home range.

# set shading colours for every contour lines
cols = colorRampPalette(c(“yellow”,”red”))
cols = cols(length(SPDF))

# borders of every isopleths
bord = “NA”

# export results on a single plot by overlapping polygons
plot(SPDF[[1]],col = cols[1l],border = bord, axes = F,
main = “KDE hpi SAMSE”)
for (i in 2 : length(SPDF)){
plot (SPDF[[i]],col = cols[i],border = bord, add = T)

# optional: add fixes and scalebar
points(loca[, 1:2],pch = 4,cex = 0.75)
scalebar(d = 10000,type = ”"bar”,label = c(“0”,”",”10km"))
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Figure 11.1 Home range
estimation of an example
data set (n = 323 locations)
using kernel density estimate
with plug-in bandwidth and
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Local convex hull (LoCoH)

Local convex hull (LoCoH) is a non-parametric kernel method that was
developed because some parametric kernel methods (e.g., symmetric
bivariate Gaussian) can overestimate use of space relative to hard bound-
aries common to many natural systems within an animal’s home range
(Getz et al. 2007). LoCoH is a generalization of the MCP estimator and
consists of constructing convex hulls (i.e., local convex polygons) for each
relocation and its nearest neighbors, and then merging the hulls from
smallest to largest to create isopleths (Getz et al. 2007). The UD is pro-
duced by structuring the hulls according to isopleths ranked by utilization;
i.e., the 10% isopleth contains 10% of the points and represents a higher
utilization than the 100% isopleth that contains all the points (Calenge
2011). The principal R packages and functions (R core team, 2016) used
to estimate home range using Local convex hull methods are shown in
Table 11.4.

The R package adehabitatHR (Calenge 2011) offers three approaches to
estimating LoCoH home ranges:

1. Fixed k LoCoH (Getz and Wilmers 2004), in which convex hulls are
constructed from k-1 nearest neighbors. Hulls are merged from smallest
to largest (Fig. 11.2a). Getz et al. (2007) suggested a heuristic value of
k =+vnvalues (where n is the number of points in the set), but warned
against the negative effects of small sample size on this value.

2. Fixed r LoCoH (Getz et al. 2007), in which convex hulls are created from
all points within r distance of the root point to create a “sphere of influ-
ence” of radius r. When merging hulls, the hulls are first sorted by the
value of k generated for each hull (the number of points contained in
the hull), and then by the area of the hull (Fig. 11.2b). To define the r
parameter, Getz et al. (2007) suggested using half of the maximum of
all the nearest neighbor distances associated with the data, but also
warned against the effect of sample size on this value.

3. Adaptive LoCoH (Getz et al. 2007) in which convex hulls are created
from the maximum number of nearest neighbors such that the sum of
the distances from the nearest neighbors is less than or equal to d. The
hulls are first sorted by the value of k generated for each hull and then
by the area of the hull (Fig. 11.2¢). Getz et al. (2007) suggested that the
maximum distance between two points among all points in the data set
is the optimal a parameter value and is not affected by sample size.
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Table 11.4 Principal R packages and functions used to estimate home range
using local convex hull methods.

Package Function Utility

adehabitatHR' LoCoH.k? Fixed k Local convex hull method
LoCoH.r? Fixed r Local convex hull method
LoCoH.a® Adaptive Local convex hull method

LoCoH.k.area/ Investigate relationship between home range size
LoCoH.r.area/ (area) and a/k/r value
LoCoH.a.area

rgeos? gArea Calculate area of estimated home range

References: 1) Calenge 2011, 2) Getz and Wilmers 2004, 3) Getz et al. 2007, 4) Bivand
and Rundel 2017.

11.3.3.1 Estimating home range using LoCoH

The first step is to transform the data set into an object of class Spatial
Points data frame. This is a requirement of LoCoH methods in adeHabi-
tatHR.

# transform locations to spatial point objects
loca pt<-SpatialPoints(loca[, 1:2])

We will first use fixed k LoCoH. Before estimating home range, we must
define k-value k& = vn, where n is the number of points in the set (Getz et
al. 2007). Alternatively, we can also investigate the relationship between
k-value and home range size to find optimal k-value (function
LoCoH.k.area) although the analysis will take considerably longer to run.
Then, we can estimate the home range using k-LoCoH.

# define k
k=sgrt(length(loca pt))

# HR with LoCoH using k-value proposed by Getz et al. (2007)
Hullk<-LoCoH.k(loca pt,k = k)

# include UD in HR estimate using r-LocoH
plot(Hullk, col = colorRampPalette(c(“red”,”yellow”))
(length(Hullk)), border = ‘NA’, axes = F,

main = “k-LoCoH")
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# optional: add fixes and scalebar
points(loca pt, pch = 4,cex = 0.75)
scalebar(d = 10000, type = “bar”,label = c(”0”,””,”10km"))

The resulting plot shows many polygons within the home range (Fig.
11.2a), each representing a different isopleth. To calculate home range size,
you must identify the largest (and final) polygon. You can also associate
a polygon to its color using function cbind.

# associate polygons of different isopleth to colors
attributs = Hullk@data

color = colorRampPalette(c(“red”,”yellow”))(length(Hullk))
dat = cbind(attributs, color)
dat

# calculate area of largest polygon (last in list, 323)
gArea(Hullk[323,])
# output
237803334

Estimating home range using r-LoCoH is similar to k-LoCoH but we use
the function LocoH. r (after defining r-value; Fig 11.2b). The suggested 1-
value is the maximum of all the nearest neighbor distances associated with
the data (Getz et al. 2007). Here again, you can investigate the relationship
between r-value and home range size to find optimal r-value (function
LoCoH.r.area)

# use get.knn to get nearest neighbour of each point
# then define r
r<-get.knn(as.data.frame(loca pt))
r<-(max(r$nn.dist,na.rm = T))/2

# HR with r-LoCoH using r-value proposed by Getz et al.
# (2007)
Hullr<-LoCoH.r(loca pt,r = r)

# include UD in HR estimate using r-LocoH
plot(Hullr, col = colorRampPalette(c(“red”,”yellow”))
(length(Hullr)), border = ‘NA’, axes = F,
main = “r-LoCoH")

# optional: add fixes and scalebar
points(loca pt,pch = 4,cex = 0.75)
scalebar(d = 10000,type = “bar”,label = c(“0”,”",”10km"))
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# associate polygons of different isopleth to colors
attributs = Hullr@data
color = colorRampPalette(c(“red”,”yellow”)) (length(Hullr))
dat = cbind(attributs, color)
dat

# calculate area of largest polygon (last in list, 323)
gArea(Hullr[323,])
# output
196944436

Estimating home range using a-LoCoH is again similar but this time
with function LocoH. a (after defining a-value; Fig 11.2¢). The suggested a-
value is the maximum nearest neighbor distance between any two points
in the dataset (Getz et al. 2007). Here again, we can investigate the rela-
tionship between a-value and home range size to find optimal a-value
(ﬁanﬁ(HlLoCoH.a.area)

# define a
a<-max(spDists(loca pt),latlong = F)

# HR with a-LoCoH using a-value suggested by Getz et al.
# (2007)
Hulla<-LoCoH.a(loca _pt, a = a)

# include UD in HR estimate using r-LocoH
plot(Hulla, col = colorRampPalette(c(“red”,”yellow”))
(length(Hulla)), border = ‘NA’, axes = F,

main = “a-LoCoH")

# optional: add fixes and scalebar
points(loca pt,pch = 4,cex = 0.75)
scalebar(d = 10000,type = “bar”,label = c(“0”,”*,”10km"))

# associate polygons of different isopleth to colors
attributs = Hulla@data
color = colorRampPalette(c(“red”,”yellow”)) (length(Hulla))
dat = cbind(attributs, color)
dat

# calculate area of largest polygon (last in list, 323)
gArea(Hulla[323,])
# output
221291166
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Figure 11.2 Home range
x estimation of an example
data set (n = 323 locations)
HBG using LoCoH methods. The
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Biased random bridge

The biased random bridge (BRB) home range estimator is a movement-
based kernel density estimator (Benhamou 2011). It is derived from the
Brownian Bridge method (BB) that estimates UDs using time between start
and end locations (Horne et al. 2007). Both methods are useful when the
goal is to illustrate space use between locations independent of location
density. As a consequence BB and BRB can characterize hard boundaries
and movement corridors within the estimated home range. However, the
theoretical foundation of BB (Brownian motion) is inconsistent with the
concepts of home range and habitat selection (Benhamou 2011). BRB
addresses this problem by incorporating a biased random bridge equation
that accounts for directional (i.e., biased) movement as well as stationary
behavior. This method is therefore useful for central place foragers, includ-
ing raptors that routinely engage in directional travel from breeding sites
to and from foraging sites (Orians and Pearson 1979).

BRB divides each segment in a track (i.e., the Euclidian distance between
two known locations) into several sub-segments by inserting new points
at regular intervals between each relocation, and then generating a kernel
function on known and interpolated points (Calenge 2011). BRB involves
a variable smoothing parameter that depends on the time spent between
a known relocation and an interpolated relocation: the smoothing param-
eter is small when the relocation is known and becomes larger as the
interpolated time between the known relocation and the interpolated loca-
tions increase (Calenge 2011).

The principal R packages and functions (R core team, 2016) used to esti-
mate home range using biased random bridges are shown in Table 11.5.
The smoothing factor for BRB is affected by parameters that can be esti-
mated from the data (Papworth et al. (2012); but see Calenge (2011) and
Benhamou (2011) for more details on these parameters).

1. Tax (Upper recording time threshold): the maximum duration (in sec-
onds) allowed for a step built by successive relocations. All steps
characterized by duration greater than T, ,, are not taken into account
in the calculations. The key role of T,,,,, is to filter out track segments
that are likely to involve significant changes in direction of movement
(Benhamou 2011). In our data set, most consecutive locations are
within 4 hours, with longer intervals when the falcon is less active (e.g.,
brooding nestlings or roosting). Thus, we set T ., to 4 hours to ensure
that all segments represented by activity are included in the analysis.
Note that this parameter has significant impact on the resulting home
range size (Fig. 11.3).
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Table 11.5 Principal R packages and functions used to estimate home range
using biased random bridge method.

Package Function Utility
adehabitatLT’ as.ltraj Transform locations in steps (bursts) to build BRB
adehabitatHR? BRB.likD Estimates the diffusion coefficient using the
maximum likelihood method.
BRB.D Estimates the diffusion coefficient using plug-in
method.
BRB Estimates UD using Biased random bridge®

getverticesHR  Extracts the home-range contours (isopleths)

rgeos* gArea Calculates area of estimated home range

References: 1) Calenge 2006, 2) Calenge 2011, 3) Benhamou 2011, 4) Bivand and
Rundel 2017

7

2. D: diffusion coefficient (squared “units” per second, where “units
denote the units of the relocation coordinates). In contrast to the BB
method that assumes a constant diffusion coefficient, BRB uses a diffu-
sion coefficient that can change during the tracking period (i.e.,
habitat-specific diffusion coefficients). There is a possibility to include
a data frame with relative diffusion coefficients of the animal in differ-
ent components of the habitat.

”

3. Lyjn: the minimum distance (in units of the coordinates) between suc-
cessive relocations, defining intensive use or resting. Note that the GPS
measurement-error should be considered when defining L, ;.. If a step
is shorter than L,;,, the animal will be considered to be stationary and
the step will be filtered out by the BRB algorithm.

4. hp;,: the minimum smoothing parameter (in units of the relocations
coordinates), applied to all recorded relocations. According to Ben-
hamou and Cornélis (2010), hpi, should at least equal the standard
deviation of the location errors and be large enough to include potential
locations in the same patch as the recorded location.
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11.3.4.1 Estimating home range using BRB

The first step is to extract direction of travel (i.e., trajectory) between re-
locations. This allows the BRB algorithm to integrate movement direction
into the estimation of home range.

# extract the trajectory from fixes
loc.ltraj <- as.ltraj(xy = loca[,1l:2],
date = loca$time, id = 1, typeIIl = TRUE)

We can then estimate home range using BRB. Before doing so, we esti-
mate diffusion parameter D using function BRB.1ikp. We will set T, .. =
4 hours, L,;;, = 50 meters and h,;, = 500 meters.

# estimate diffusion parameter D
vv <- BRB.likD(loc.ltraj, Tmax=4*60*60, Lmin=50)

We then estimate the UD within our home range using BRB. The first
step is to create home ranges of varying isopleths (i.e., from 50% to 95%).
Creating independent projected polygons from these home range esti-
mates will allow the user to export them to GIS software and overlap home
ranges with a map of the habitat. Because of the high density of points
around the nest, the algorithm sometimes cannot draw a polygon for 50%
isopleth. If this is the case (CL too short), start with higher (55% or 60%).

# estimate UD
BRB <- BRB(loc.ltraj, D = vv, Tmax = 4*60*60, Lmin = 50,
type = “UD”, hmin=500, grid = 500, extent = 3)

# first create list of polygons of different isopleths
SPDF = list()
Levels = seq(95,50,by = -2.5)
for (j in 1 : length(levels)){
cat(3j,”\n")

# extract every isopleth (contour line) of level j
cont = contourLevels(kernPIl, cont = levels[]])
line = contourLines(x = kernPIl$eval.points[[1l]],
y = kernPIl$eval.points[[2]], z = kernPIl$estimate,
level = cont)
sldf = ContourLines2SLDF(line)
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# set projection (UTM) for polygons
utm = names(sort(table(as.character(loca$utmzone)))[1l])
utm = gsub(’N|S’, ‘', toupper(utm))
projé4string(sldf) = CRS(paste(“+ proj = utm + zone =", utm,
“ 4+ datum = NAD83 + ellps.default = GCS”, sep = ‘'))

# extract every isopleth of level j
verBRB <- getverticeshr (BRB,percent = levels[]j])
# list of every polygons made with each contour level

SPDF[[j]] = verBRB
names (SPDF)[j] = levels[j]
}

We then overlap all the polygons within the same plot to visualize use
of space within the 95% home range (Fig. 11.3b).

# set shading colours for every contour lines
cols = colorRampPalette(c(“yellow”,”red”))
cols = cols(length(SPDF))

# borders of every isopleth
bord = ‘NA’

# export results on a single plot by overlapping polygons
plot(SPDF[[1]],col = cols[1l],border = bord, axes = F,
main = “ BRB Tmax = 4 hours “)
for (i in 2 : length(SPDF)){
plot(SPDF[[i]],col = cols[i],border = bord, add = T)

# optional: add fixes and scalebar
points(loca[, 1:2],pch = 4,cex = 0.75)
scalebar(d = 10000,type = ”"bar”,label = c(“0”,”",”10km"))



230 Tétreault and Franke

x x
X X XX 5
)‘ X x
X
a) Tmax=2 hours x
X
X
%
X
X
X x
X
¥
X
X
X X
x X
XXX
X X
X
X
b) Tmax=4 hours <
%
X
% x
e

0 10km ’*’
e —

Figure 11.3 Home range
estimation of an example
data set (n = 323 locations)
using biased random bridge
with Tmax set as:

a) 2 hours (95% home range
size = 99 km?);

b) 4 hours (95% home range
size = 229 km?).

Isopleths from 95% (yellow)
to 50% (red) as well as re-
locations (x) are depicted.
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Interpreting the output

Home range estimates obtained with KDE, LoCoH and BRB differ in
size and degree of fragmentation (Figs. 11.1, 11.2 and 11.3, and see Table
11.6 for a summary of the outputs).

KDE

Home range estimates using kernel density estimation with h,; varied
with the choice of pilot, despite the fact that choice of pilot has little, if
any, biological relevance. Resulting home range outputs are either over-
smoothed, resulting in an overestimation of used areas (especially around
the nest; Fig. 11.1b), or highly fragmented, resulting in multiple patches
(Fig. 11.1a). However, in our example, predictions of core ranges (i.e., 50%
home ranges) were consistent regardless of which smoothing parameter
was used.

LoCoH

Unless specified otherwise, LoCoH methods produce UDs based on all
isopleths from the smallest to largest (i.e., 100% isopleth). In our example,
k-LoCoH produced isopleths from 5% to 100% (Fig. 11.2a), r-LoCoH pro-
duced isopleths from 83% to 100% (Fig. 11.2b), and a-LoCoH produced
isopleths from 63% to 100% (Fig. 11.2c). Thus the method used to con-
struct and arrange the convex hulls is important (e.g., identifying
frequently used patches such as foraging sites and the nesting site), even
though overall characterization of home range estimates remained rela-
tively stable in our example. The main difference among the three LoCoH
methods used is delimitation of areas of highly used (i.e., red and orange)
patches. Home range size showed little variation (from 197 km? for
r-LoCoH to 237 km? for k-LoCoH; Fig. 11.2) in our example. Here again,
subjective, visual choice for the best method based on successive trials is
an option, but Getz et al. (2007) argued that adaptive LoCoH (a-LoCoH)
is the best method unless there are good biological reasons to use fixed k
or fixed r. Although Local convex hull methods produced geometrically
shaped polygons that appear unnatural, the method was useful for char-
acterizing home ranges that were not fragmented and portrayed space use
between the nest and principal foraging areas (Fig. 11.2).

BRB

The biased random bridge method was able to depict principal move-
ment corridors (bridges) in home range estimates, but only when T, ,,, was
set to represent the sampling regime (i.e., locations every 4 hours; Fig.
11.3b). The resulting home range is contiguous, includes movement cor-
ridors and principal foraging sites, and over-smoothing does not appear
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to be a problem (i.e., estimates reflect the underlying data). However, set-
ting T, ).« < 4 resulted in a fragmented home range without travel corridors,
(Fig.11.3a), and was similar to the KDE using h,; with samse pilot (Fig.
11.1a). The simulated data used for our examples were based on the move-
ment data from a falcon breeding within the Coxe Islands at the northern
end of the Melville Peninsula in Nunavut, Canada. Our interpretation is
based on direct knowledge of the landscape, location of the nesting site,
and reproductive status, including brood size and age of nestlings, and we
are confident that our interpretation of travel corridors between foraging
areas (small islands of highly productive tundra within marine habitat)
and the nesting site is consistent with the output. We emphasize that
knowledge of the species’ biology, as well as knowledge of the context of
individuals (e.g., breeding status and surrounding landscape) can help
considerably when judging which approach to home range estimate is
most suitable.

Table 11.6 Summary table of the size and degree of fragmentation of home
range estimates using the seven methods highlighted in the examples.

Method 95% HR Size (km?) * Fragmentation
KDE-SAMSE pilot 57 high
KDE-unconstr pilot 169 low
Fixed k LoCoH 237 none
Fixed r LoCoH 197 none
Adaptive LoCoH 221 none
BRB-Tmax=2 hours 99 high
BRB-Tmax = 4 hours 229 low

* LoCoH estimates are given as 100% HR for comparative purpose because 95%
isopleth is not precisely defined for each three methods.
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Conclusion

Home range estimation is an abstraction of true space use by animals
(Hemson et al. 2005), and home range analysis is a means to visualize the
effect of multiple factors on an individual's movement behavior for a spe-
cific period of time. Because home range is a spatial representation of an
animal’s behavior within the surrounding habitat, it is important that an
understanding of a species’ biology drives the modeling process (Powell and
Mitchell 2012). The objective of home range modeling is to provide greater
understanding of the ways in which the behavior of wild animals fulfills
their needs, and it is critically important that statistical methods make real-
istic assumptions about the way in which an animal behaves in its
environment (Worton 1995). Consequently, because all animals behave dif-
ferently, there is no single, best estimator for all species or research questions.
Our examples show how the choice of home range estimator and appropri-
ate selection of smoothing parameters can have considerable influence on
home range estimates. For this reason, selection of a home range estimator
should be conducted carefully after preliminary analysis of the data.

Because Gyrfalcons have specific needs for nest selection (Booms et al.
2010) and potentially forage in multiple cover types with a patchy distribu-
tion of resources, a suitable home range estimator for this species must be
able to characterize frequently used patches and travel corridors among
patches, without including areas that are not used. Based on our data, we
suggest that biased random bridge home range estimator best fulfills those
requirements. However, deciding which estimator to use and subsequent
interpretation of the output must be done with caution (particularly when
sample size is small). In this regard, there is considerable opportunity to
share tracking data among studies through databases such as MoveBank
(http://www.movebank.org/about/index.html) to resolve methodological
differences and to increase sample size (i.e.,, number of individuals).

Comparative studies are especially important because they can shed light
on factors that drive intraspecific variation in home range. Understanding
the way in which home range varies in time, space, and within and among
species is fundamental to gaining insight into aspects of a species’ ecology
such as habitat preferences (Williams et al. 2011), carrying capacity (Ryan
and Jamieson 1998), and risk of extinction (Woodroffe and Ginsberg
1998). Given the rate of change that has occurred in Arctic ecosystems,
these aspects are increasingly important for conservation of Arctic residents
such as Gyrfalcons. Further, future studies involving Gyrfalcon home range
should include estimates of habitat-specific abundance and distribution of
principal prey species (see Chapter 8) because it is well known that fluctu-
ations in prey abundance can have an effect on demography (Nielsen 1999,
Mossop 2011). Yet, it is still unclear how these fluctuations in prey distri-
bution (see Chapter 9) affect Gyrfalcons” home range.
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