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Ecological niche modell ing and priorit izing areas for species
reintroductions

Enrique Martinez-Meyer, A. Townsend Peterson, Jorge L Servin and Lloyd F. Kiff

Abstract Species reintroduction programmes, in prior-
itizing areas for reintroductions, have traditionally used
tools that include measures of habitat suitability and
evaluations of area requirements for viable populations.
Here we add two tools to this approach: evaluation of
ecological requirements of species and evaluation of
future suitability for species facing changing climates.
We demonstrate this approach with two species for
which reintroduction programmes are in the planning

stages in Mexico: Califomia condor Gymnogyps califtr-
nianus and Mexican wolf Canis lupus bailni. For the

condor, we identify three areas clustered in the Sierra
San Pedro Mdrtir, Baia Califomia; for the wolf, we
identify a string of suitable sites along the Sierra Madre
Occidental of westem Mexico. We discuss the limita-
tions of this approach, identifying ways in which the
models illustrated could be made more realistic and
directly useful to reintroduction programmes.

Keywords Califomia condor, Canis lupus baileyi,
ecological niche modelling, Gymnogyps californianus,
Mexican wolf, reintroduction.

lntroduction

One of the aims of biodiversity conservation is to
avoid loss of species. The best approach preserves

natural systems prior to perturbation or damage by

human activities. However, conservation action usually

begins after species have been extirpated locally or
regionally, leaving communities not representative of

their original state. Worse still, certain species are

extirpated consistently at the initiation of human activity
(Patterson, 1987), placing those species in danger of
global extinction.

Captive breeding programmes and reintroductions
have thus become a key step in avoiding extinctions, as

well as for reconstructing natural communities per-

turbed by human activities. The question of how to
define success in these programmes remains open,
although the objective is clearly long-term persistence

without the need for intervention and management

(Seddon, 1999). Recent meta-analyses have indicated
three factors emerging as key for successful reintroduc-
tions (Wolf ef a\.,1998): (1) habitat quality of release area,
(2) release site relative to historical distribution of the

species, and (3) number of individuals released.

Reintroductions generally involve analysis, planning,

and selection of optimal areas. Such analyses have taken
two paths: (1) population viability analysis (PVA) to
determine minimum area requirements and selection of
sites by extent (Howells & Edwards-fones, 1997;
Marshall & Edwards-|ones, 1998; Merrill et al., 1999;

South ef aL,2000), or (2) habitat suitability analysis, in
which geographical information system analysis is used

to refine identification of potential sites via known

features of optimal habitat, areas of minimum mortality,
or areas of maximum prey availability (Bright &

Smithson, 2001; Cramer & Portier, 2001).

These strategies, however, have drawbacks. PVA
models are generally not spatially explicit, and thus do
not take into account complexities of real world land-

scapes. Habitat suitability models depend critically on
knowledge of the natural history of the species involved.

When reintroductions extend beyond well known
mammals to the broader suite of species that compose
natural communities, the fine details of species' natural
histories are often unknown. The uncertain basis for

refining selection of areas for reintroductions beyond
simply extent of known distributions may therefore
select areas of uncertain quality. Finally, no prior effort
has considered longer term considerations of likely
climate change effects on suitability of areas for species'

reintroductions.
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Here, we refine reintroduction planning via tools from
ecological niche modelling (Peterson et aI., 2002b). Bright
& Smithson (2001) suggested that reintroductions can be
compared with species' invasions. We accept this
analogy, but in a different sense: whereas Bright &
Smithson focused on establishment and spread, we
consider niche suitability of the region for the species
(Peterson & Vieglais,2001; Peterson, 2003a). This step,
which Bright & Smithson subsumed in'establishment,'
is nevertheless key in making an invasion, or reintro-
duction, successful (Wolf et al., 1998). Moreover, the
techniques we apply are broadly applicable, including
to species so poorly known biologically that habitat
suitability approaches would not be applicable
(Peterson et aI.,2002b). We illustrate this approach with
the examples of the Califomia condor Gymnogyps
californianus and Mexican wolf Canis lupus bnileyi n
Mexico, for which reintroduction programmes are in the
planning stages.

Methods

Input data

For the condor large quantities (1,,970 unique localities) of
georeferenced occurrence data were provided by the
authors of a previous analysis (Stoms ef al., 1993), including
data from museum specimens, historical sightings, and
recent sightings of the species prior to its extinction in the
wild and subsequent reintroduction in Califomia. For the
wolf, 26 occurrences were assembled from museum
collections' databases (US National Museum of Natural
History, University of Kansas Natural History Museum,
Mnseum of Vertebrate Zoology, Instituto de Biologia of
Universidad Nacional Aut6noma de M6xico, University of
Michigan Museum of Zoology) and six recent auditory
records in remote regions (J. Servin, unpubl. data). For
wolves, localities were georeferenced to 0.1' using the 2000
Mexican national census (INEGI, 2002).

Environmental data layers in which ecological niches
were modelled included 12 maps summarizing topogra-
phy (elevation, slope, aspect, topographic index; USGS,
1997) and annual means of climate variables (diumal

temperature range, precipitation, maximum, minimum,
and mean temperatures, solar radiation, wet days, and
vapour pressure; IPCC, 1999). Environmental data sets
were resampled to a pixel resolution of 0.02 * 0.02'
(c. 2 * 2 km), for areas within 700 and 500 km of known
occurrences of condors and wolves, respectively.

Ecological Niche Modell ing

Our general approach to modelling species' ecological
niches and predicting geographic distributions is

described in detail elsewhere (Stockwell & Peters,
1999), as are previous tests of this modelling techni-
que in anticipating diverse phenomena (Peterson &
Cohoon, 1999; Peterson et aI., 2002a; Peterson &
Vieglais, 2001.; Stockwell & Peterson, 2002a,b;
Anderson et aL,2003). The ecological niche of a species
can be defined as those ecological conditions under
which it can maintain populations without immigration
(Grinnell, \917); as such, it is defined in multidimen-
sional environmental space (MacAfthur, '1,972). 

Several
approaches have been used to approximate ecological
niches (Nix, 1986; Austin et al., 1,990; Carpenter et aI.,
1993). Of these, one that has been extensively tested is
the Genetic Algorithm for Rule-set Prediction (GARP),
which includes several inferential approaches in an
iterative, evolutionary computing approach (Stockwell
& Peters, 1999).

All modelling in this study was carried out using
GARP (Scachetti-Pereira, 2002). Within the processing
of the GARP software, available occurrence points are
divided evenly into training and extrinsic test data
sets; the former set is again divided evenly into true
training data (for model rule development) and
intrinsic test data sets (for model rule evaluation and
refinement). GARP is designed to work based on
presence-only data; absence information is included
via sampling of pseudo-absence points from those
pixels where the species has not been detected. GARP
works in an iterative process of rule selection, evalua-
tion, testing, and incorporation or rejection: firstly, a
method is chosen from a set of possibilities (e.9.
logistic regression, bioclimatic rules), and is then
applied to the training data and a rule developed;
rules may evolve by several means (truncation, point
changes, crossing-over among rules) to maximize
predictivity. Predictive accuracy (for intrinsic use in
model refinement) is then evaluated based on 1,250
points resampled from the intrinsic test data and 1,250
pseudo-absence points. Change in predictive accuracy
between iterations is used to evaluate whether parti-
cular rules should be incorporated into the model, and

the algorithm runs either 1,000 iterations or until
convergence.

GARP projects ecological niche models onto current
Iandscapes to estimate present day geographical dis-
tributions of suitable conditions. For testing, the half of
the input occurrence points set aside as extrinsic test
data is overlaid, and observed correct predictions
tallied. Proportional area predicted present * number
of extrinsic test data points is used as a null expectation
of successful prediction of points if no non-random
association existed between prediction and test points. A

X'� approach (1 df) tests the significance of departure
from random expectations, or a binomial probability can
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be used when sample sizes are low (Anderson et al.,
2002).

We produced 100 replicate models of each species'
ecological niche, from which we filtered 10 best
models using the procedure proposed by Anderson
et aL (2003) for choosing among replicate models. The
procedure is based on the observations that: (1)
models vary in quality, (2) variation among models
involves inverse relationships between omission error
(i.e. leaving out true distributional area) and commis-
sion error (i.e. including predictions of presence areas
not actually inhabited), and (3) best models are
clustered in a region of minimum omission of
independent test points and moderate area predicted
(an axis directly related to commission error;
Anderson et aI., 2003). Position relative to the two
error axes provides an assessment of the relative
accuracy of each model. Hence, to choose the best
subsets of models we (1) eliminated all models except
the 20 showing lowest omission error based on
independent test points, (2) calculated median area
predicted present among these low omission models,
and (3) identified the 10 models closest to the overall
median area predicted.

Our procedures for evaluating likely climate change
effects on species' distribution potential are described in
detail elsewhere (Peterson et al., 2001). In general, we
compared distributions predicted under 1961-1990
climate scenarios with projections for 2040-2070. These
crude climate scenarios clearly reduce the detail
possible in our results, but serve nevertheless to identify
trends in habitat suitabilitv for species in future
decades.

The general circulation model used (Carson, 1999;
HadCM2, Hadley Centre) includes several scenarios.
We assessed both a conservative and a less conserva-
tive view of how climates are likely to change using the

SRES A2 and 82 scenarios. 82 assumes a more
environmentally educated human population with a
strong emphasis on regional rather than global devel-
opment, making it a conservative estimate of climate
change. A2 also assumes regional development, but
with many regions relying on fossil fuels as the main
energy source, maintaining or increasing current
greenhouse gas emissions, and is therefore more
liberal. Climate data were downscaled to 0.5 * 0.5'
spatial resolution using methods described elsewhere
(Peterson et aL, 200I). Models developed for present-
day climates were projected onto future climate
conditions, providing estimates of species' future
potential distributions. We averaged predictions result-
ing from the two future projections to provide a single
future potential prediction of distribution for each
species.

o 2006 FFl, Oryx, 4A@\, 411-418
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Post-processing

Once basic ecological niche models were developed and
projected onto current conditions for each species in the
form of a raster grid with values ranging from 0
(predicted absence) to 10 (maximum consensus in
prediction of presence), we refined predictions using
five considerations of habitat suitability, human inter-
ference, and climate change:

(1) We inspected areas predicted to be habitable to
ensure they reflected the known original (i.e. as
of 1800) distribution of the species, and trimmed
disjunct areas outside the original range as
necessary. Sources for understanding original
distributional areas were Hall (1981) for wolves
and Kiff (1.977) for condors in Mexico.

(2) We reduced predictions to areas of remaining
natural vegetation using the most recent land
cover map (Instituto de Geografia, 2001). The
original 78 classes in this map were reclassified
to primary natural vegetation types versus
everything else. Predicted areas were reduced
to areas currently holding such natural vegeta-
tion types.

(3) We weighted the grid from (2) by distance to
human presence, which we represented as the
combination of roads (paved primary, second-
ary, and unimproved roads; ESRI, 1993) and
towns with >5,000 inhabitants (INEGI, 2002).
We buffered (10 km distance classes) around
roads and towns to create a raster coverage
summarizing distance (d) to human presence.
We used this coverage to weight predictions
from (2) as 1.-10/d for condors and 1-9/d fot
wolves (the constant in the numerator simply
scales results to reasonable ranges). We rescaled

resulting grids from 0 to 10 based on the
maximum values of the index.

(4) We weighted the map resulting from (3) by the
climate change predictions; this latter had values
(c) ranging from 0 (predicted future absence) to
10 (consensus in prediction of future suitability
for the species). We used these predictions to
weight the map produced in (3) by multiplying
by 1.-1./c. We rescaled the resulting map from 0
to 10 based on maximum values of the index.

(5) Finally, area considerations were included by
extracting patch areas (including the eight con-
tiguous surrounding pixels) using FragStats
(McGarigal & Marks, 1995). We identified patches
with the highest values resulting from (4) that also
had greatest areas, and took those patches as the
most appropriate for reintroductions.
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Results

Condor

The predicted distribution coincided with the known

1900 range of the species (Kifl 1977) from southem

Califomia south to northern Baja California (Fig. 1).
Based on statistical comparisons with extrinsic test data

all models produced were significantly more predictive
than random models.

For the Mexican portion of the species'crude potential

geographic distribution (4.33 * 106 ha predicted by >5 of

the 10 best subsets models; Fig. 2a) we reduced the

predicted potential distribution to match the distribu-
tion of primary vegetation types (Fig. 2b). This reduced

Fig. 1 Known occurrence points (circles)

of Califomia condor in southem
Califomia, and results of GARP analysis
predicting the potential geographic
distribution south to northem Baja
Califomia. Confidence in prediction of
potential presence is shown as a greyscale
gradient from white (no confidence) to
black (high confidence). Inset shows final
areas (dark polygons) selected as optimal
for reintroductions: areas predicted
habitable at present and not in the future
are shown in light grey; areas predicted
habitable at present and in the future are
in black; areas predicted not habitable at
present but that are predicted to become
habitable in the future are in dark grey.

Fig. 2 Process of identifying suitable areas
for reintroductions of Califomia condors
in Mexico: (A) raw GARP prediction that
reflects overall suitability of climates and
landscapes, (B) cutting by diskibution of
primary vegetation in the region, (C)
weighting by distance to human presence
(roads and settlements), and (D) weighting
by future climate suitability. Confidence in
prediction of potential presence is shown
as a greyscale gradient from white (no

confidence) to black (high confidence).
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Fig. 3 Prediction of geographic distribution of conditions fitting the
ecological niche of California condors in Mexico under changed
climate scenarios (average of two climate change scenarios). Area
considered habitable at present (Fig. 1) is shown in light grey
(where all 10 models agree in prediction of presence). Predictions of
future suitability (10 model agreement) are shown in black.

the potential distributional area to 3.31 * 106 ha predicted
present by >5 of the 10 best subsets models (23.7%

reduction). We then applied the 1-I0 / d weighting factor
to represent distance to human presence (Fig. 2c).
Rescaling the suitability measure we lose direct compar-
ability in terms of area; nevertheless, at rescaled grid
values of )5, we found an area of 660,748 ha (80.0%

reduction from Fig. 2b).

Priori t izing areas for reintroductions 4ig

Analyses of suitable future climate areas identified a
general north-east shift in potentially suitable areas
(Fig. 3). We applied the 1-1/c weighting facror to the
results of Fig. 2c to represent future changes in climate
suitability for the species (Fig. 2d). At rescaled grid
values of )5, we identified an area of 389,723ha (41,.0%
reduction from Fig. 2c). Finally, we evaluated the spatial
extents of areas predicted suitable for condors at the
highest rescaled suitability values (10). These three areas
ranged from 989 to 17,370 ha (Fig. 1).

Wolf

The predicted geographic distribution coincided well
with Hall (1981) for the Mexican subspecies. The only
major omission was Oaxaca; however, the species is
known from the state based on only one record
(Goodwin, 1969) and Oaxaca therefore probably always
peripheral in the species' distribution.

An initial 61.15 * 106 ha were predicted as suitable by
>5 of the 10 best subsets models (Fig. 4a). We reduced
this area to primary vegetation areas (Fig. 4b) for a
potential distribution area of 37.67 * 106 ha predicted
present by >5 of the 10 best subsets models (38.4%
reduction). We then applied the 1.-9/d weighting
factor to represent distance to human presence (Fig. 4c);
at rescaled grid values of )5 remaining area was726,526
ha (98.0% reduction from Fig. 4b).

The climate change projection indicated a north-

east shift in potentially suitable areas (Fig. 5). We
applied the L-1./c weighting factor to represent future

Fig. 4 Process of identifying suitable areas
for reintroductions of Mexican wolves in
Mexico: (A) raw GARP prediction that
reflects overall suitability of climates and
landscapes, (B) reducing by dishibution of
primary vegetation in the region, (C)
weighting by distance to human presence
(roads and settlements), and (D) weighting
by future clinate suitability. Confidence in
prediction of potential presence is shown
as a greyscale gradient from white (no
confidence) to black (high confidence).
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changes in suitability for the species (Fig. 4d). At
rescaled grid values of >5 we identified an area of

228,492 ha (68.6"/o reduction from Fig. 4c). Finally, we
evaluated spatial extents of areas predicted suitable
for wolves at the highest rescaled suitability values
(8.5); these eight areas ranged from 5,935 to 14,343 ha
(Fig. s).

Discussion

We emphasize that the examples presented here are
intended as illustrations only so that future workers

may take advantage of the ideas presented. Numerous
improvements are possible, and would be required were
these analyses to be used for actual implementation. For
example, the habitat suitability measures are artificial,
and could be improved considerably for a particular

species based on details of its biology. Similarly, our
occurrence data did not differentiate between types of
occurrences and therefore analyses of more site-specific

activities (e.g. nesting, roosting, feeding) could improve

models considerably.

The procedure applied takes into account a broad
suite of factors in identifying areas suitable for
reintroduction programmes. In contrast with most

present approaches (Southgate & Possingham, 1.995;
Merrill et al., t999; South ef aL, 2000; Danks & Klein,
2002), which generally focus on aspects of habitat
suitability and area requirements, we considered more

diverse factors. We began modelling the species'
ecological niches in terms of climatic and landscape

Fig. 5 Prediction of geographic
distribution of conditions fitting the
ecological niche of Mexican wolves in
Mexico under changed climate scenarios
(average of two climate change scenarios).
Area considered habitable at present
(Fig. 4) is shown in light grey. Predictions
of future suitability are shown in black (all
models agree). Inset shows final areas
selected as optimal for reintroductions:
areas predicted habitable at present and
not in the future are shown in light grey:
areas predicted habitable at present and in
the future are in black; areas predicted not
habitable at present but that are predicted
to become habitable in the future are in
dark grey.

features, which we then reduced to original distribution

areas for the species, removing areas of over-prediction
owing to effects of history.

We then proceeded to a phase that is analogous to the
habitat suitability approaches used by previous authors.
We used a simple scheme based only on presence of
natural vegetation and distance to human presence. Of
course, more complexity could be incorporated, includ-
ing factors such as prey availability and mortality
(Bright & Smithson, 2001; Cramer & Portier, 2001).
Nevertheless, we provide this step in simple form to
illustrate the method.

Next, we considered factors related to longer term
persistence, modelling expected changes in suitability of
areas in view of changing climates. We based these

analyses on methodologies that have been applied

broadly to questions of biodiversity conservation
(Carey & Brown, 1994; Huntley et aL, 1995; Kadmon &

Heller, 1998; Price, 2000; Peterson et a\.,2001; Peterson,
2002a,2003b; Siqueira & Peterson, 2003), of which there
is a recent global review (Thomas et al., 2004). Areas
identified as remaining suitable for the species are those
that are projected based on future (2055) climates to

match the conditions modelled as presently suitable for

the species.

Our selection of specific habitat patches for reintro-

ductions was based on the simple consideration of
larger areas being better. However, population viability
analyses used by other authors (Lamberson et aI., 1994;

Nolet & Baveco, 1996; Marshall & Edwards-Jones, 1998)

could be introduced to refine the process further. hr this
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way areas would be selected based on area thresholds
that reflect the species' particular area requirements for
persistence.

This synthetic approach to prioritization of areas for
reintroductions offers several advantages over previous
methods. Our first phase addresses the broadest set of
considerations: that the area would actually be suitable in
terms of climate and other coarse-scale factors for the
species. This step has support from previous studies of
the predictability of the geographic potential of species'
invasions (Peterson, 2003a). Addition of climate change
considerations into the prioritization exercise offers a
further additional improvement: both current and longer
term suitability of an area is incorporated. As such, we
believe that this methodology offers a useful framework
for more robust identification of areas for reintroductions.
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