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Abstract 

______________________________________________________ 

Birds of prey are difficult to study and the status and distribution of many 

species is poorly known. As top predators usually occurring at low densities, 

raptors may be particularly sensitive to habitat degradation. Conservation of 

raptors might be vital to prevent further loss of species and ecosystems. 

Between April and December in 2008 and 2009, raptors and associated habitat 

data were surveyed using a distance sampling transect method in 70 randomly 

selected one square kilometre plots in the Cerros de Amotape National Park, 

the Tumbes National Reserve and buffer areas within the North West Biosphere 

Reserve in Peru.  A total of 1261 detections of 19 diurnal raptor species were 

recorded.  

I examined community structure, diversity across land uses and relationships 

between abundance and niche attributes within species. Abundance and 

richness were highest outside protected areas and lowest in the national park. A 

Canonical Correspondence Analysis (CCA) of raptor species and habitat 

variables ordinated them according to latitude, elevation, percentages of 

vegetation cover, and, in some cases, individual tree species. 

I used logistic regressions (GLMs) to obtain habitat distribution models for 

eleven raptor species. Twenty eight habitat models were obtained and twelve 

habitat variables were included. Best models included measured percentage of 

vegetation cover at different strata, elevation and latitude. My findings suggest 

that vertical structure of forested areas is of particular importance for raptors in 

extreme northwest Peru. 
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Density and population size estimates were calculated for 15 species using 

distance sampling line transect counts. Densities were stratified by time of 

detection (morning or afternoon) and by habitat type. Flying birds were included 

in the analysis. For all but two species, density estimates were higher in the 

morning than in the afternoon. Absolute density was higher than 1 individual km-

2 for three species and for seven species it lay between 0.34 and 0.86 

individuals km-2. Some species showed a marked preference for particular 

habitat types. 

I used generalized additive models (GAMs) to examine the relationship between 

the occurrence of six diurnal raptors and species diversity and abundance to 

vegetation structure, elevation and cattle „density‟ in 39 km² plots within my 

study area. Percentage of vegetation cover 5-15 m above the ground was the 

most important feature influencing the distribution of most species, including the 

rarer ones. Raptors responded differently to cattle density: Presence of species 

that foraged in open habitats increased with cattle density, while presence of 

range restricted or declining species decreased.   

Conservation efforts of raptors in extreme northwest Peru should also be 

conducted in areas outside the North West Biosphere Reserve by protecting 

remaining forests. Moderate cattle densities can benefit some species and help 

maintain a high raptor diversity in the study area. However, this activity should 

be strictly monitored so further fragmentation of forests and damage to 

vegetation structure is significantly reduced particularly inside the Tumbes 

National Reserve.  
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Chapter 1: An introduction to tropical raptors: Ecology, status 

and study 

______________________________________________________ 

1.1 Raptor diversity and distribution 

There are serious disputes on the number of species considered as diurnal 

raptors (Sibley and Monroe 1990; Fergusson-Lees and Christie 2005), although 

most authors agree that this group includes five families: The Cathartidae (New 

World vultures), Pandionidae (Osprey), Accipitridae (kites, eagles, vultures and 

hawks), Sagitaridae (Secretarybird), and the Falconidae (caracaras, forest 

falcons, pygmy falcons, falconets and true falcons) (Fergusson-Lees and 

Christie 2005; Remsen et al. 2011). In all, these five families encompass a 

range of 292 to 338 species that are found in all continents, except for 

Antarctica and in many oceanic islands around the world (Amadon and Bull 

1998; Bildstein 2004; Fergusson-Lees and Christie 2005). Differences in the 

number of species are accounted by the status of some raptor subspecies that 

are considered full species (eg. the Sharp-shinned Hawk -Accipiter striatus) 

(Fergusson-Lees and Christie 2005; Remsen et al. 2011); species that are 

treated as conspecific (Variable Hawk –Buteo polyosoma with Puna Hawk –

Buteo poecilochrous) (Schulenberg et al. 2007; Remsen et al. 2011) or 

separated (Cabot and de Vries 2003), species with uncertain status (eg. the 

Altai Falcon -Falco altaicus) (Eastham and Nichols 2002; Wink and Sauer-Gurth 

2004) and new species being recently discovered (Cryptic Forest Falcon -

Micrastur mintoni) (Whittaker 2002). 
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Although the exact number of diurnal raptor species is still controversial, it is 

widely acknowledged that approximately 80% of species occur totally or 

partially in tropical regions (Kennedy 1986; Bildstein et al. 1998), and that the 

most important regions for raptor conservation lie within the tropics (Thiollay 

1994). There are only nine countries with 70 or more diurnal raptor species 

(Peru, Colombia, Venezuela, Ecuador, Tanzania, Ethiopia, Kenya, Sudan and 

Uganda) and all of them are within the tropical regions of the world (Bildstein et 

al. 1998; Schulenberg et al. 2007; GRIN 2012). 

 

1.2 Morphology 

Strong hindlimbs and sharp curved beaks used to subdue and kill large prey are 

the most characteristic anatomical features of the Falconiformes, and along with 

wing morphology these features can be used to express ecological separation 

and/or overlap, sexual and age dimorphism, habitat selection and hunting 

strategies within families and species (Biggs et al. 1977; Mendelsonhn et al. 

1989; Ward et al. 2002; Fowler et al. 2009). There are several differences in the 

foot, beak and wing structure of Accipitridae and Falconidae. Accipitridae have 

stronger and more robust tarsi, toes and claws and their feet are more adapted 

to capture and kill prey (Schoener 1984; Fowler et al. 2009). Accipiter species, 

a predominantly tropical group that mainly predates on birds have large and thin 

toes equipped with long and slender claws. In piscivorous taxa within the 

Accipitridae and the Osprey (Pandion haliaetus) in the Pandionidae, claws are 

used to impale fish and are particularly large and curved (Fowler et al. 2009). 
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Among the Falconidae, Falco species have robust feet and large toes (but short 

claws) that facilitate striking and grabbing fast moving prey, while caracaras and 

forest falcons´s hindlimbs are more suited for searching and capturing prey in 

the ground (Cade 1982; Robinson 1994; Ward et al. 2002). 

Raptor families and species also differ in cranial morphology, probably as a 

consequence of dietary preferences. Falcon species primarily use their beaks to 

kill prey by severing the spinal cord at the base of the skull and hence their 

beaks have developed tomial teeth and cutting edges in the maxilla (Cade 

1982; Hertel 1995). Scavengers (old and new world vultures) feed on large 

dead prey and have developed skull structures that facilitate ripping and twisting 

big pieces of meat from carcasses (Hertel 1995). 

In the Falconiformes, proportions of wings and body mass are related to 

particular hunting strategies and different flight styles. Wing loading (weight per 

unit of wing area) is of particular importance in influencing flying and hunting 

mode (Jaksic and Carothers 1985; Kirmse 1998). Species will also vary their 

hunting strategies depending on prevailing weather conditions, topography and 

prey availability in their territories (Barnard 1986; Buchanan 1996; Mueller et al. 

2004). 

 

1.3 Reversed sexual dimorphism 

Raptors are an exceptional group among birds because they present reversed 

sexual dimorphism meaning that for most species females are larger than 

males. In addition, size differences between genders are generally greater in 
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species that capture large prey and in ornithofagous taxa like Accipiter species 

(Amadon 1975; Snyder and Willey 1976; Boal and Mannan 1996).  

Several theories dealing with ecological, physiological, anatomical and 

behavioral adaptations have tried to explain reversed sexual dimorphism but, so 

far, none has gained general acceptance (Bildstein 1992; McDonald et al. 

2005). Probably the most extended is the one stating that differences in size 

within a couple allows the capture of differentiated prey, expanding the range of 

predatory items and broadening the food niche which in turn maximizes dietary 

intake. This might be particularly beneficial in times of high food demand (i.e. 

when the pair has to feed chicks). This theory however does not explain why 

females are larger than males (Amadon 1975).  

Reproductive behavior and physiology may provide some explanations for the 

increased size of female raptors. Aggressive (and smaller) males have less 

chance of killing females at early stages of pair bonding and mating. In addition, 

larger females may be more successful in securing a territory held by a male 

that is ready to mate by excluding other (smaller) females. In some species, 

smaller males have proved to be more successful hunters during courtship at 

low food availability periods and were preferred by females for mating (Olsen 

and Olsen 1987; Hakkarainen et al. 1996; McDonald et al. 2005). Additionally, 

egg size, which is relatively large in raptors, might drive evolution of larger 

females, which in turn might be more successful during brooding given their 

larger feather sizes (Rahn et al. 1975; McDonald et al. 2005). 
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1.4 Raptor studies 

Raptors are naturally low-density occurring species that usually segregate each 

other because they compete for food, nesting sites and territories. Additionally 

many species inhabit remote areas. Forest interior species are secretive and 

inconspicuous and hence very difficult to detect (Thiollay 1985; Falk and Moller 

1988; Katzner et al. 2003). Given these particular features, obtaining large 

amounts of data or proper sample sizes for meaningful analysis is particularly 

difficult and time consuming (Bednarz 2007). However, raptors are regarded as 

charismatic, powerful and mysterious animals and through history many species 

have been selected as national symbols. This fascination has led to the 

protection of many raptor species and for this, research and scientific 

knowledge have proof vital (Cade et al. 1988; Salvador and Ibanez 2006).  

 

1.5 Habitat  

The study of the relationships between species and its habitats has been a key 

question in ecology and has a long tradition because it is usually assumed that 

species prevail in those habitats they prefer so understanding their response to 

habitat changes is important for their conservation (Schmutz 1989; Lopez-

Lopez et al. 2007; Tapia et al. 2007).   

Habitat loss is regarded as the most important threat to raptors, yet for most 

species little is known on their habitat preferences, on the processes involved in 

habitat selection or how they respond to habitat loss (Thiollay 1994; Bierregard 

1998). Recent habitat studies in Falconiformes have been directed to find 

correlations between presence of species and environmental variables to 
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predict its occurrence or to measure the availability of resources required by a 

species to sustain high rates of survival (Janes 1985; Bustamante and Seoane 

2004; Guisan and Thuiller 2005; Tapia et al. 2007). Some studies dealing with 

habitat use by raptors have made quantitative assessments of species and 

individuals in particular areas and relate this data to species presence and 

absence. However species absence from a particular habitat does not mean 

that this is being avoided and might be a consequence of its availability (Jones 

2001; Thiollay and Rahman 2002).  

Although usually confounded with habitat use, much less attention is paid to 

behavioral patterns that condition habitat selection and the use of resources 

(Jones 2001; Martinez et al. 2003). Behavioral information related to the 

presence of individual in a given habitat is fundamental to understand habitat 

selection processes and deserve more attention from researchers. (Jones 

2001). The understanding of species (and prey) behavioral responses to 

environmental changes in times when natural habitats are continuously and 

irreversibly changing pose an increasing challenge because it requires long 

periods of field work and because hypothesis are more difficult to prove. 

Behavioral traits behind habitat selection could help predict species responses 

to habitat loss and may provide key information for their conservation. 

 

1.6 Migrations 

Raptor migrations mostly involve individuals travelling from breeding grounds in 

the north to summer grounds in the south; however, intra tropical, altitudinal and 

south to north migrations (particularly in the neotropics) have also been 
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documented (Bildstein and Saborio 2000; Bildstein 2004; Hoffman et al. 2002). 

For most species, availability of food resources is the suspected main driver of 

migration (Fergusson-Lees and Christie 2005). 

Approximately 60% of all raptor species undertake some form of annual 

seasonal migration. Most species follow established flyways along leading lines 

of particular topographic features connecting land masses, while others migrate 

in many directions (Bildstein and Zalles 2001; Hoffman et al. 2002; Bildstein 

2004). Raptor migration flyways usually allow movements of birds over land and 

most individuals avoid crossing open water that lead to high mortality rates (Zu 

Aretz and Leshem 1983; Kerlinger 1985).  

The Mesoamerican Land Corridor a stretch of land connecting North and South 

America is used by almost 5 million raptor individuals that leave their breeding 

grounds during the boreal autumn and head south. More than 90% of the whole 

populations of three species (Missisipi Kite –Ictinia mississippiensis, Broad-

winged and Swainson´s Hawk –Buteo swainsoni) and the whole American 

population of the Osprey are involved in these southward movements (Bildstein 

and Zalles 2001; Bildstein 2004). Conservation of habitats along migration 

routes is vital for the survival of individuals during migrations (Bildstein 2004). 

 

1.7 Hunting 

Raptors species are regarded as opportunistic predators and composition of 

their diet depends on the availability of prey in their habitats. Raptors that prey 

on a wide diversity of species from different taxonomic groups that behave 

significantly different are termed as dietary generalists. This group usually 
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includes species that spend more time searching than pursuing prey. Raptors 

that have a less diverse diet are considered dietary specialists (Steenhof and 

Kochert 1988; Jimenez and Jaksic 1989; Berkelman 1997; Iriarte et al. 1990; 

Oro and Tella 1995).  

Raptors with a highly specialized diet employ less diverse hunting strategies, 

however species with a narrow food-niche will shift their prey preferences in 

seasons of food shortage, particularly in areas were environmental conditions 

change greatly or as a consequence of changes in prey distribution, abundance 

and detectability. Morphological specialization for the capture and consumption 

of particular prey reduce raptors efficiency for feeding on alternative foods and 

this is reflected in a less diversified diet (Benkman 1988; Beissinger 1990; 

Nystrom et al. 2005; Takeuchi et al. 2006). 

Hunting by a bird of prey can be divided in two parts: the search and the attack. 

Search strategies most commonly used include still-hunting, fast contour-

hugging flight, high searching, stalking and listening. Most common attack 

strategies include direct and indirect flight attack, tail chase, glide attack and 

drops or stoops (Fox 1995). 

Still-hunting is considered to have low energetic cost. This method is usually 

performed by birds perching in advantage points where they wait until a suitable 

prey is spotted (Toland 1987). In fast contour-hugging flight, the raptor flies 

rapidly and close to the ground, forests canopy or along edges to take flushed 

prey (Fox 1995). Energetically, fast-contour hugging and tail chases are 

considered four times more costly than still hunting from perches (Toland 1987). 
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Soaring is widely used by raptor species with low wing load to locate food either 

by sight or smell. Raptors soar at low or high altitude gaining lift from rising wind 

currents or thermals. When foraging, new and old world vultures and certain 

eagles and hawks climb by circling in a thermal and then glide down slowly 

looking for food. Other species, particularly falcons soar to gain altitude and 

then attack their prey by descending abruptly in long, fast and sometimes 

vertical stoops (Pennycuick 1973; Cade 1982; Houston 1986). Other hunting 

strategies include group or cooperative hunting (Mader 1978) and many species 

will stalk prey, particularly when invertebrate prey is abundant (Willis et al. 1983; 

Thorstrom et al. 2000). 

 

1.8 Diet 

Birds of prey are at the top of the food chains (although not completely free of 

predation), and as such, are considered good models for studies on the 

structure and niche attributes in a predator community, on the relationships 

between predators within a guild, and on responses of predators to variations 

on prey abundance (Jaksic 1985; Nystrom et al. 2005). Additionally, studies on 

raptors´ diet can provide data on the ecology of species and their prey and may 

help to understand the make-up and structure of communities (Bonvicino and 

Bezerra 2003; Marti et al. 2007).  

Early methods for the study of raptors diet were based on the examination of 

stomach contents during collection of museum specimens. Today, methods are 

less invasive and include direct observations of hunting individuals and prey 

deliveries at nesting sites, collection and analysis of pellets and prey remains 
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under feeding perches, inside nests and under nesting sites (Hector 1985; 

Robinson 1994; Nielsen 1999). These methods are not only used to 

characterize prey diversity but also biomass of prey consumed which helps to 

determine the importance of particular prey species in raptor diets during certain 

periods of their life history (Oro and Tella 1995; Takeuchi et al. 2006). 

Given the low density of raptor species and their difficulty in detection, direct 

observations of successful hunting attempts are sporadic and identification of 

preys carried or consumed at feeding perches difficult. For these, most studies 

on raptors diet have been conducted around nesting sites diet composition is 

usually restricted to prey items consumed during their breeding cycles and 

might not reflect species prey preferences during their entire life history (Klein et 

al. 1988; Robinson 1994; Piana 2007). 

 

1.9 Breeding 

Knowledge of the breeding behavior and requirements of raptors species is 

considered a key factor for their conservation, however basic information on the 

breeding of several species, particularly those inhabiting tropical forests is still 

incomplete and even nonexistent (Bierregard 1998). 

Most of the Falconiformes, and particularly the Accipitridae, built nests but some 

will lay eggs inside abandoned cavities in trees and rock ledges, abandoned 

nests and even on the ground. Clutch size varies from one to several eggs per 

breeding cycle and development before fledging can take some weeks in 

smaller species (Accipiter spp.) to six months in the larger ones (i.e. Harpy 

Eagle –Harpia harpyja). Nest predation, food shortage and siblicide are 
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considered the main causes of low nesting success and productivity in birds of 

prey (Meyburg 1973; Sibley 2001). Species with low reproduction rate and 

productivity are considered more susceptible to extinction (Terborg 1974; 

Kruger and Radford 2008). 

Breeding of raptor species, behavior of parents and their role during breeding 

(nest attendance, parental roles, etc.), breeding success, clutch size, nest 

productivity, chick development, fledging and dispersal is usually documented 

by means of direct observations of wild individuals at nests. This information, 

when combined with demography parameters is fundamental to assess 

response of species to habitat destruction (Berkelman 1996; Bierregard 1998; 

Delannoy and Cruz 1988).  

 

1.10 Communities 

As in other terrestrial taxonomic groups, raptor communities have an increasing 

number of species from the poles to the equator and in general, warmer 

climates result in a greater diversity of species. This is probably a result of the 

increased proportions of forested areas, rainfall and mountain ranges existing in 

the tropical regions of the world (Newton 1979; Rohde 1992; Fuchs et al. 2011).  

Partitioning of limited biotic and abiotic resources contributes to the coexistence 

of species within complex assemblages while specialization along some 

resource dimensions may segregate species and individuals within them 

(Schoener 1974; Schoener 1984; Solonen 1994; Katzner et al. 2003).  The 

structure of raptor communities is a result of the occurrence of species and their 

abundance which in turn are a consequence of their habitat requirements and 
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distribution, diet preferences and morphology (Jaksic 1982; Simmons 1985; 

Thiollay 1993; Solonen 1994; Petty et al. 2003).  

Given that raptors are suspected to forage in habitats were calorific intake is 

higher, food availability is suspected to be a very important factor contributing to 

raptor diversity and abundance. This is mostly because prey acts as a limiting 

factor on reproduction, influences the use of space and affects the composition 

of communities at least on a temporal basis (Smith et al. 1981; Steenhof and 

Korchert 1988; Korpimaki and Nordahl 1991; Solonen 1994; Buchanan 1996; 

Rohner 1996; Marzluff et al. 1997; Krueger et al. 2002). 

Habitat diversity, vegetation structure and topography also affect the 

composition of raptor communities and play a key role in raptor assemblages 

(Janes 1985; Preston 1990; Wightman and Fuller 2005). In southern India, 

raptor diversity increased from open areas to closed forest, but the highest 

number of species occurred at edges and woodlots were species of all habitats 

tended to merge. In French Guiana raptors were more diverse in areas with 

greater habitat diversity (Thiollay 1993 and 2007). Changes in forest cover 

affects prey detection and availability influencing the abundance of raptor 

species in a given area (Tjenberg 1985; Pedrini and Sergio 2001; Whitfield et al. 

2007). Availability of nesting sites, which is often related to habitat 

characteristics, also acts as driving force in shaping raptorial communities 

(Solonen 1994; Katzner et al. 2003).  
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1.11 Demography 

A main goal of raptor demography studies is to obtain numbers of species 

abundance to make inferences about population status, habitat associations 

and population trends which can then be used to foster species conservation 

(Norvell et al. 2003; Andersen 2007). Despite being a particular difficult group to 

survey, researchers have spent a lot of time and effort to count raptors to 

estimate population size, monitor populations of conservation concern and even 

compare different methods for counting them (Fuller and Mosher 1985). 

Different research techniques used to obtain data on raptors´ demography 

include point and transect counts, spot-mapping, and capture and marking of 

individuals (Fuller and Mosher 1985; Thiollay 2007). Distance sampling, a group 

of method used to estimate the absolute density and abundance of biological 

populations have been extensively used in several bird (and other) taxa yet its 

use in Falconiformes is still scarce (Andersen et al. 1985; Marsden 1999; Boano 

and Toffoli 2002; Lloyd 2003). This could be attributed to the relatively high 

number of records per species (between 40 and 100) needed to confidently 

estimate species densities. However, an advantage of Distance sampling over 

other methods is that densities obtained are not affected by different 

detectability of species (Rosenstock et al. 2002; Thomas et al. 2002).  

Raptor counts along roads, a variation of transect counts have become very 

popular to obtain indices of raptors relative abundance (Fuller and Mosher 

1985; Ellis et al. 1990; Jensen et al. 2005). However, when using this method, 

researchers need to be aware that important sources of variation in species 

detectability caused by vegetation or habitat structure, by the behavior or size of 

the target species or by different observers will affect counts. These sources of 
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bias must be taken into account during study design and data analysis. Perhaps 

most importantly, researchers should be aware that values of relative 

abundance do not have a known relationship to true density, so demography 

data derived from abundance indexes should be interpreted with care (Millsap 

and LeFranc 1998, Rosenstock et al. 2002; Norvell et al. 2003). 

 

1.12 Raptor conservation and threats 

Among the Accipitridae, nine species are listed as critically endangered, eight 

as endangered and 26 as vulnerable. These species include vultures from 

tropical Asia that are affected by indirect drug poisoning, and species endemic 

to tropical islands and forests that are seriously affected by habitat destruction 

and direct prosecution (BirdLife International 1992, Mañosa et al. 2003; BirdLife 

International 2008; Remsen et al. 2011). Among the Falconidae, five species 

are threatened by habitat destruction, prosecution, and illegal traffic. The 

critically endangered California Condor (Gymnogyps californiacus: Cathartidae), 

is the only threatened species within its family. The species suffered serious 

declines due to prosecution and indirect lead poisoning (BirdLife International 

1992 and 2008). 

Habitat loss is considered the main threat to raptors and this is the main cause 

of population decline for most species listed as threatened by BirdLife 

International (2008). This is particularly alarming in highly diverse ecosystems 

and islands in the tropics where destruction, disturbance and fragmentation of 

forests continues and will persist if increased conservation efforts are not 

implemented (Thiollay 1994; Myers et al. 2000).  
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Human population growth is one of the major drivers affecting raptors because 

as population increases the loss of primary and native habitats caused by 

urbanization and development also increases (Thiollay and Rahman 2002; 

Carrete et al. 2009). In urban areas raptor diversity is reduced and 

assemblages are less complex particularly where human induced impacts are 

more severe due to habitat reduction and urban encroachment (Jaksic et al. 

2001; Thiollay and Rahman 2002).  

Important habitats for raptor species such as tropical forests and plains are 

continuously lost by the removal of vegetation cover for agriculture while 

wetlands are drained and turned into crop plantations. In Africa, raptor diversity 

has been severely reduced outside protected areas as natural habitats are 

transformed for agriculture and cattle grazing (Seavy and Apodaca 2002; 

Thiollay 2006b). Additionally, deserts and dry savannas are lost as irrigations 

give way to agricultural fields. Conversion of open country to cattle grazing and 

monocultures also have detrimental effects in raptor populations not only 

because the vast expanses of habitat and prey species that are lost but also 

because the use of pesticides (Bierregard 1988; Mooney 1998; Sorley and 

Andersen 1994). 

In forested ecosystems timber extraction can negatively affect raptors 

abundance, nest availability and reoccupancy and can cause nestling mortality 

(Penteriani and Faivre 2001; Vargas et al. 2006). Subsistence and commercial 

hunting in natural environments can deprive raptor species of favored prey and 

human activities around active nests affect hatching rates reducing nest 

productivity in large species. Additionally, direct prosecution (shooting and 

poisoning) of raptors has depleted populations in urban and rural areas 
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worldwide (Kenward 1999; Whitfield et al. 2004; Gonzales et al. 2006; Vargas et 

al. 2006). 

Indirect poisoning of birds of prey has become a serious factor affecting their 

populations. This is particularly relevant in Old World vultures feeding on 

carcasses of livestock treated with the drug diclofenac which has lead to serious 

declines in populations of at least four vulture species that are now critically 

endangered (Oaks et al. 2004; BirdLife International 2008). Poisoning of raptors 

due to the ingestion of lead ammunition (and other toxics) found in carcasses is 

known to affect California Condor populations and those of other scavenging 

species (Henny and Elliot 2007). 

Although not as relevant as direct prosecution, electrocution of raptors that 

perch on transmission poles or collide with power lines is increasing as a result 

of the expansion of electric lines associated with rapid urbanization in rural 

areas (Xirouchakis 2004; Alvarado and Roa 2011). Construction of wind farms 

across the world has increased the risk of birds colliding with rotor blades, 

although this still infrequent (Hunt 2000; Thelander and Rugge 2000; de Lucas 

et al. 2004; Drewitt and Langston 2006). Data on raptor mortality caused by 

wind turbines is still scarce and the methodology to measure it has not been 

standardized. As the demand for alternative fuel sources across the globe 

increases, more research is needed to fully assess the impacts of wind farms 

on raptors (Drewitt and Langston 2006; Madders and Whitfield 2006). 

Trapping of wild birds and the collection of eggs from active nests for the sport 

of falconry has been a cause for the decline of a number of raptor species, 

particularly of Saker (Falco cherrug) and Peregrine (Falco peregrinus) falcons in 
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Asia and Europe. However, in recent years an increased use of captive bred 

falcon and hybrids, particularly in the Middle East has reduced the demand for 

trapped birds (Barton 2000). The legal framework for falconry worldwide 

regulates and enforces the sustainable and humane use of wild and captive 

bred raptors for falconry and many falconers are involved in research and 

conservation of raptors worldwide. It was a result of research conducted by 

North American falconers through breeding and release of juvenile peregrines 

that the species recovered after being severely affected by contamination from 

DDT and related pesticides in the late 60´s and early 70‟s (Hickey and 

Anderson 1968; Bond 2007).  

 

1.13 Raptors in Peru 

Despite being one of the most raptor diverse countries in the world, little is 

known about the Falconiformes in Peru. Only four studies on the structure of 

Peruvian raptor communities have been published: Two were conducted in the 

Amazonian lowlands of Madre de Dios (Robinson 1994; Valdez 1999), one in 

the forests of northwest Peru (Piana and Marsden 2012) and one in the dessert 

plains in the northwest (but only included the guild of carrion feeders) (Wallace 

and Temple 1987). The distribution of raptor species throughout the country is 

continuously being updated as more bird surveys are conducted in remote 

regions (Piana et al. 2010; Angulo and Piana 2011). 

In Peru, ten raptor species are threatened. The endangered Andean Condor is 

protected by Peruvian law and was widely persecuted in the past to protect sea 

bird colonies nesting on guano islands. Today, direct persecution of Andean 
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Condors in coastal ecosystems has ceased but young and adult individuals are 

still captured and used in traditional ceremonies (Yawar Fiesta) in some Andean 

towns. Although birds are released after the ceremonies, it is suspected that the 

survival rate of these birds is low (McGahan 1971). Research is urgently 

needed to measure the impact of Yawar Fiesta in Andean Condors within the 

Peruvian Andes. 

Destruction of montane ecosystems east of the Andes for agriculture and 

grazing is probably the main threat for one endangered species (Solitary Eagle 

–Harpyhaliaetus solitarius) and three vulnerable species: The Semi-collared 

Hawk (Accipiter collaris), the Black-and-Chestnut Eagle (Spizaetus isidori) and 

the Barred Hawk (Leucopternis princeps) (BirdLife International 2012). With 

populations restricted to mangrove forest in Tumbes, habitat destruction is also 

suspected to be the main threat for Mangrove Hawks (Buteogallus subtillis) in 

Peru (BirdLife International 2012).  

The Harpy and Crested Eagle (Morphnus guianensis), are two vulnerable 

species from the eastern lowlands that are threatened by destruction of forests 

as road construction and timber extraction increases throughout its range. Adult 

and young individuals of these species are continuosly killed as trees 

supporting active nests are logged and individuals are hunted for food or 

souvenirs (Piana 2009).  

The endangered Gray-backed Hawk (Leucopternis occidentalis) is a Tumbesian 

endemic occurring in western Ecuador and extreme northwest Peru. In Ecuador 

its population is in constant decline due to severe habitat loss for agriculture 

and grazing. In Peru data on the species demography has not been published 
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and its distribution is still unknown. This information is urgently needed to 

assess it‟s status globally and implement conservation measures to protect this 

species along its entire range (Vargas 1995; BirdLife International 2008). 

 

1.14 Aims of the PhD and overview and aims of chapters 

This PhD examines those factors that contribute to the makeup of the raptor 

community that inhabits the forests of the North West Biosphere Reserve 

(NWBR) in extreme northwest Peru. It focuses on finding those parameters 

(geographic and floristic) that influence the distribution of species in the 

landscape. It makes a revision of the current methods used to estimate raptor 

densities and uses a Distance Sampling method to estimate absolute density 

and population sizes of raptors in the study area. This PhD also measures the 

impact of cattle grazing on raptor species distribution, by estimating cattle 

density through dung counts. 

The aims of the PhD are: 

 To determine the ecological factors that influence the occurrence, 

distribution and abundance of diurnal raptor species in northwest Peru 

and to use these data to predict future responses of key species to 

environmental change. 

 To improve the methods used to estimate demographic parameters in 

the Falconiformes and to use novel variants of Distance sampling 

transect methods to assess population sizes and densities of raptor 

species. 
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 For a number of species occurring in the study area, predict how human 

induced habitat alterations will affect them individually and to the 

assemblage as a whole. 

 To use information obtained from data analysis to generate management 

recommendations that promote raptor conservation in the NWBR and in 

extreme northwest Peru. 

 

Chapter 2: Tropical dry forests, study area and field methods 

Overview: In this chapter I review the distribution of dry forest in the world and 

Peru, describe the characteristics of the study area and provide details on the 

field methods used to measure habitat parameters and raptor along transects. 

More methodological details are given, together with statistical analysis in the 

following four data chapters. 

The aims of this chapter are: 

 To assess the distribution and level of threat of tropical dry forests 

worldwide and in Peru. 

 To describe the study area, its different habitats and their relationship to 

different areas of endemism and biomes occurring in South America. 

 To describe the different and more general field methods used during 

field work to collect data on the distribution of raptor species and those 

used to measure habitat variables.  

 



21 
 

Chapter 3: Diversity, community structure and niche characteristics within a 

diurnal raptor assemblage of northwest Peru 

Overview: I explore how diversity and abundance of raptors is related to 

habitats types and land uses and asses those factors that drive raptor 

community make up in the study area. Species realized niches characteristics 

that can be used for habitat management and ultimately for species 

conservation are also discussed.   

The aims of this chapter are: 

 To measure niche width, niche position, niche bottlenecks, and spatial 

niche overlap within raptor community and to assess the influence of 

these parameters in shaping the structure of the raptor community in 

northwest Peru.  

 To identify environmental and geographical variables that promote or 

constrain raptor species presence in the study area and that segregate 

and/or aggregate them along different niche dimensions. 

 To use niche characteristics within species to identify those of 

conservation priority. 

 

Chapter 4: Habitat associations within a raptor community in a protected area 

in northwest Peru 

Overview: Environmental data collected along transects is used to obtain 

habitat models for raptor species and to identify combination of habitat 

parameters (floristic and geographic) that best predict species presence. These 
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results are further discussed in relation to habitat management strategies that 

are needed to maintain species of conservation concern in the NWBR, and 

buffer areas in extreme northwest Peru. 

The aims of this chapter are: 

 To identify environmental and geographical variables that are likely to be 

more relevant in influencing raptor species distribution in the NWBR.  

 To use logistic regressions to generate habitat models that explain the 

presence of raptor species within the study area.  

 To use these models to identify management interventions or priority 

areas in order to promote conservation of raptor species in northwest 

Peru.  

 

Chapter 5: Densities and population sizes for raptors in a protected area in 

northwest Peru: Use of Distance Sampling and a review of survey 

methodologies 

Overview: I review methods most commonly used to estimate demographic 

parameters of raptors species and explore the pertinence of using a line-

transect Distance sampling method to estimate absolute density of raptors. I 

also explore the influence of time of day and habitat types in species density 

and explore the use of cluster analysis combined with Distance sampling to 

estimate absolute densities of rare or less detected species.  

The aims of this chapter are: 
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 To discuss different methods used to estimate absolute density of raptor 

species.  

 To use of Distance Sampling methods along transects to obtain density 

estimates and population size of raptor species occurring in the study 

area. 

 To obtain density and population size of species in different habitats by 

using habitat types as a covariate in Multicovariate Distance Sampling 

(MCDS). 

 To improve density estimates of rare species by using statistical 

hierarchical analysis to group species with similar detection 

characteristics. 

 

Chapter 6: Influence of cattle grazing intensity on raptor distribution within a 

Peruvian protected area 

Overview: Cattle densities derived from dung counts along transects and 

measured vegetation parameters were used to generate generalized additive 

models that measured the response of raptor species to increased cattle 

density in the study area. These data is used to generate cattle management 

and raptor species conservation recommendations within the NWBR.  

The aims of this chapter are: 

 To use dung counts to obtain cattle densities in the study area and to 

relate these to the diversity, abundance and distribution of raptor 

species. 
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 To measure the impact of cattle density on the structure of the raptor 

community and on the distribution of single species in the study area. 

 To obtain threshold levels of cattle density that can be used as gross 

management tools to maintain the highly diverse community of raptors 

that is characteristic of northwest Peru. 

 

Chapter 7: Discussion: Conservation priorities, management recommendations 

and the future of raptor research 

Overview: I point out at the importance of raptor conservation, review the most 

relevant findings of this thesis and discuss the implications of habitat 

fragmentation within the Tumbesian Centre of Endemism. Then I define 

priorities for habitat management and raptor research in the NWBR and the 

tropical regions of the world while point at future research directions for 

estimating demographic parameters of tropical raptor species. 

The aims of this chapter are: 

 To highlight the importance of raptor conservation worldwide and within 

neotropical ecosystems in particular. 

 To promote habitat connectivity within the Tumbesian Endemic Centre 

(and elsewhere) for species conservation, particularly those that are 

endemic or threatened.  

 To provide recommendations for the management of cattle grazing within 

the NWBR. 
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 To highlight the great potential of distance sampling methodology to 

obtain demographic parameters of raptor species worldwide, but 

particularly in areas similar to those found in extreme northwest Peru. 
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Chapter 2: Tropical dry forests, study area and field methods 

_______________________________________________________ 

2.1 Tropical dry forests 

Tropical dry forests have been considered as the most endangered of all 

remaining habitat types (Janzen 1988), and although present in all the tropical 

portions of the world, approximately 54% of remaining tropical dry forests are 

located in South America (Miles et al. 2006). Throughout their range, these 

forests are subject to a wide variety of threats mainly as a result of human 

activities. Forest fragmentation, burning, and conversion for agriculture and 

pasturelands, are perhaps the most important of these threats (Miles et al. 

2006).  

 

2.2 The Tumbesian Centre of Endemism in Peru 

In Peru three main tropical dry forest types occur: i)The inter Andean seasonally 

dry forests, mainly located within the Marañon and Mantaro river basins in the 

northern and south-central portion of the Andes, ii) the eastern seasonally dry 

forest in the San Martín department northeast of the Andes, iii) the equatorial 

seasonally dry tropical forest of northwest Peru (from Tumbes to the northern 

portion of La Libertad department) that overlaps with the Tumbesian Centre of 

Endemism (Linares-Palomino 2004 and 2006).  

Located south of the Chocó Endemic Area and west of the Marañon Endemic 

Area, the Tumbesian Centre of Endemism (sensu Cracraft 1985) or the 

Tumbesian Endemic Zone is considered of high conservation priority (Myers et 

al. 2000; Figure 1). With 55 bird species restricted to this region, the Tumbesian 
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Centre of Endemism has one of the highest numbers of endemic bird species 

among all the endemic bird areas of South America. Of these, 16 species are 

threatened, with habitat loss and alteration as the main cause of threat (Best 

and Kessler 1995).  

 

Figure 1: Map of the Tumbesian Centre of Endemism (adapted from Best and 

Kessler 1995) and detail of study area (in the circle). 

 

 

2.3 Protected areas in extreme northwest Peru 

Located within the equatorial seasonally dry forest in extreme northwest Peru, 

and in the centre of the Tumbesian Centre of Endemism, the North West 

Biosphere Reserve (NWBR) is a set of three adjacent protected areas (the 

Cerros de Amotape National Park –CANP, the Tumbes National Reserve –
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TNR, and El Angolo Hunting Preserve -EAHP) that together preserve 230,000 

hectares of dry, semi-deciduous and deciduous forests. These three protected 

areas are Important Bird Areas (IBA) and they form the largest tract of these 

forest types still remaining in the whole Tumbesian Centre of Endemism (Best 

and Kessler 1995; Angulo 2009).  

With 36 species so far recorded, and despite being a predominantly arid region, 

raptor diversity in the Tumbesian Centre of Endemism in Peru is unusually high 

(Piana 2011). This high diversity is presumably related to the overlap and close 

proximity of four biomes and several endemic bird areas (Best and Kessler 

1995). Additionally, the Porculla Pass (2,150 m asl.), the lowest pass along the 

entire tropical range of the Andes, lies within this region and might have allowed 

some species to cross from the eastern lowlands to the eastern side of the 

Andes and vice versa. Also, the continuity of forested ecosystems west and 

north of the Andes might have promoted migration of species from central 

America and colonization further south (Best and Kessler 1995; Stotz et al. 

1996; Birdlife International and Conservation International 2005; Fuchs et al. 

2011). 
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Figure 2: Human activities in the study area (from left top corner and clockwise) include fuel wood extraction, forest 

clearing for agriculture, timber extraction and free-range cattle grazing.   

 



 

30 
 

 

Figure 3: Cattle grazing and its impact in the Tumbes National Reserve (TNR). 
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2.4 Study area 

I selected a study area of 25 x 25 km (62 500 ha) in the northern part of the 

NWBR; the centre of this square lying approximately over the El Caucho 

Research Station. The study area encompassed the northern sector of the 

CANP and the TNR: From the small town of El Tutumo (3º45´S) in the park´s 

buffer area to Quebrada El Ebano (4º S); and from the small town of Belen 

(80º30´ W) to the Tumbes River on the border with Ecuador (80º45´ W -eastern 

limit of the TNR; Figure 4). With an altitude of up to 900 m asl, topography is 

mainly influenced by the Cerros de Amotape Cordillera which runs southwest to 

northeast from the study area.          

 

Figure 4: Study area showing the three protected areas that form the North 

West Biosphere Reserve and location within Peru. 
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Precipitation in the study area is approximately 900 mm per year and is 

markedly seasonal with a rainy season from January to March (90% of annual 

precipitation) (Nunez and Zegarra 2006). Average yearly temperature is 26ºC, 

with temperatures higher in lower areas. During El Niño Southern Oscillation 

(ENSO) events, precipitation in Tumbes department can be many times higher 

than in average years, while average temperature can increase by 2ºC (CDC-

UNALM 1992). During ENSO periods, sea-surface temperatures increase as 

warm sea currents from the north displace the cold waters of the Humboldt 

Current. Water vapour in the air increases as water temperature rises. This then 

precipitate as warmer air coming from the sea ascends through the western 

ranges of the Andes. Drastic changes in vegetation cover and structure can 

occur over short periods of time in the study area, particularly during and after 

ENSO events (Linares-Palomino 2005). 

The study area includes four main habitat types within the equatorial seasonally 

dry tropical forests of northwest Peru (Linares-Palomino 2006). Classification of 

these habitats is based on Aguirre et al. (2006) although I further divided the 

deciduous forest into two habitat types. The habitats considered were: Dry 

savanna (between 30 to 100 m asl) where Algarrobo (Prosopis pallida) and 

Faique (Acacia macracantha) trees dominated the vegetation; dry deciduous 

forest (100-300 m) where Madero (Tabebuia bilbergi) trees dominated and with 

presence of Ceibo (Ceiba trichistrandra) and Pasallo (Eriotheca ruizii) trees; 

deciduous forest (300-600 m) where Guasimo (Guazuma ulmifolia) dominated 

the lower strata and Ceibo the upper strata, and semi deciduous forest (> 600 

m) with presence of Fernán Sanchez (Triplaris cumingiana), Guaruma 

(Cecropia litoralis), Polopolo (Choclospermun vitifolium) and Ceibo (Figure 5).  
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CANP is a strictly protected area where no direct use of natural resources is 

permitted. However, due to poorly implemented control policies the park is used 

for free-range cattle grazing and hunting (Piana pers. obs). TNR is a national 

protected area where direct use of natural resources is allowed as long as these 

are compatible with the objectives of the reserve and its management plans. In 

the sections I surveyed, these activities included low-to-moderate intensity 

timber extraction, hunting, cattle grazing and conversion of forest to pastures 

(Figures 2 and 3). According to the Peruvian Law No. 26834, buffer areas are 

not part of the protected areas yet activities conducted here should be 

compatible with the objectives of the protected areas adjacent to them. Despite 

this, human induced activities in buffer areas in the study site ranged from forest 

clearing for agriculture and cattle grazing, free-range cattle grazing, hunting, 

commercial and subsistence timber extraction, non-timber forest product 

extraction (e.g. collection of fruits, parrots, etc.). During field work I never 

encountered any representatives of the park or reserve administration in the 

buffer areas. 
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Figure 5: Habitat types in the study area (from left top corner and clockwise):Dry savanna, dry deciduous forest, deciduous 

forest and semi deciduous forest.  

 



 

35 
 

2.5 Field methods 

2.5.1 Raptor surveys and habitat recordings 

 
Data on raptors and associated habitat measures were collected during two 

field seasons April-December 2008 and April-December 2009. Such long 

periods in the field were necessary to cover large areas and to accumulate 

sufficient raptor records. Long field seasons may introduce biases due to 

seasonality, but I surveyed only outside of the local wet season. All raptor 

species included in surveys were resident in the area. Evidence suggests that 

in habitats similar to mine, breeding is most likely during the wet season 

(Vargas 1995) and no transportation of nesting materials, active nests, or prey 

supply to nestlings was recorded during the fieldwork.  

Seventy (70) one-km2 plots (1 x 1 km) were positioned in the 25 x 25 km study 

area (11.2% of the total area). Plots were allocated randomly without 

stratification within all areas of the study site except the TNR. I positioned six 

plots inside the TNR because I wanted to measure the impact of intensive 

cattle grazing on the raptor community. A small number of plots were too 

remote to allow safe access, so plots up to 2 km closer to existing trails were 

substituted for these (Thiollay 1993). No two plots were chosen if they fell in 

adjacent squares. I used existing trails as transects or cut new ones; transect 

length was 1.8 km in each square, and were ideally 0.7 km long, followed by a 

stretch of length 0.4 km perpendicular to the first stretch, and finally another 

stretch of 0.7 km parallel with the first. Walking speed was maintained at 1 km 

h-1. Speed was maintained by constantly monitoring the time spent walking 

and distance traversed with a GPS.  
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Seventy transects were walked in the morning, 90 min after sunrise 

(approximately 6.30 AM) or sometimes later if rainy or foggy conditions 

reduced raptor detectability/activity (Thiollay 1989). Additionally, to increase 

sample size and to measure the effect of time of day in raptor abundance, I 

evaluated 36 plots from 3.00 PM to 5.00 PM. I accept that time spent 

surveying within km squares was low (around two hours on the formal survey). 

This may give rise to problems with defining true absences from squares, 

especially if raptors were more easily detected in some habitats than others 

(Buckland et al. 2001).  

All diurnal raptors along each transect were recorded and notes were taken to 

register whether individuals were flying, perched, seen or heard upon 

detection (Boano and Toffoli 2002). Birds were identified to species and age. 

The horizontal distance to each encounter was recorded using a laser range 

finder (Andersen et al. 1985; Rosenstock et al. 2002). For birds that were 

soaring in circles above the forest canopy, I calculated the centre of these 

circles during displays or soaring flights and then measured the distance from 

this point to the transect with a laser range finder. Additionally characteristics 

of individuals were recorded (absence of feathers due to moulting on flying 

birds) and birds that were suspected to have been previously detected were 

excluded from the counts. I acknowledge, that some degree of double-

counting of individuals may have occurred; yet double counting is generally of 

little consequence if such events are relatively infrequent as in my research. 

Additionally, only one transect was surveyed on a given day and transects 

were separated more than one kilometre form each other, thus minimizing the 



 

37 
 

chances of counting the same bird in two different transects (Buckland et al. 

1993; Rosenstock et al. 2002).  

Species included in these analyses were Turkey Vulture (Cathartes aura), 

Black Vulture (Coragyps atratus), King Vulture (Sarcoramphus papa), 

Bicolored Hawk (Accipiter bicolor), Crane Hawk (Geranospiza caerulescens), 

Great Black Hawk (Buteogallus urubitinga), Harris´s Hawk (Parabuteo 

unicinctus), Gray-backed Hawk (Leucopternis occidentalis), Short-tailed Hawk 

(Buteo brachyurus), Zone-tailed Hawk (Buteo albonotatus), Savanna Hawk 

(Buteogallus meridionalis) Black Hawk Eagle (Spizaetus tyrannus), Laughing 

Falcon (Herpethoteres cachinnans), Crested Caracara (Caracara cheriway) 

and Bat Falcon (Falco rufigularis) (Figures 6 and 7).   

 

2.5.2 Habitat evaluations 

 

Habitat measurements were taken at eight points, 200 m apart, along each 

transect (i.e. eight points per sq km). To avoid possible biases derived from 

sampling along edges, evaluations were conducted 15 m perpendicular to the 

trail inside the forest. Elevation, latitude and longitude were recorded with a 

GPS, and gradient was measured with a clinometer at each point along the 

transect. Although the study area is not large, geographical coordinates are 

seen as being important as they allow identification of geographical 

relationships within the raptor community (for example the north tends to be 

wetter than the south). There was no significant correlation between elevation 

and latitude or longitude (rsMax = 0.12, PMin = 0.33) so the geographical 

variables are not simply surrogates for relief.  
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Canopy height and height of upper vegetation strata (the height at which the 

mid point of the uppermost vegetation continuum was located) were visually 

estimated, and percentage cover at different four vegetation strata (0-1 m, 1-5 

m, 5-15 m, and 15-25 m above ground) was estimated. These vegetation 

covers were estimated by eye in increments of 5% within a 10 m radius circle 

above the recorder. They were then averaged across the eight points along 

each transect, to some degree lessening issues of inaccuracy or unusual 

readings at individual points. The two largest trees within a 15 m radius of the 

plot‟s central point were selected, and identified to species if they belonged to 

one of the following tree species: Algarrobo, Faique, Madero, Ceibo, Guasimo, 

or Polopolo (see Study area section for details of these trees‟ ecological 

significance). The diameter at breast height (DBH) of these two trees was 

measured (Marsden and Whiffin 2003; Lloyd 2008). 
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Figure 6: Raptors in the study area (from top left corner and clockwise) Turkey Vulture, Black Vulture, King Vulture, Great 

Black Hawk (immature), Savanna Hawk and Harris‟s Hawk (immature). 
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Figure 7: Raptors in the study area (from top left corner and clockwise) Gray-backed Hawk, Short-tailed Hawk, Black 

Hawk-Eagle (immature), Laughing Falcon, Crested Caracara and Bat Falcon. 
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Chapter 3: Diversity, community structure and niche 

characteristics within a diurnal raptor assemblage of northwest 

Peru 

______________________________________________________ 

3.1 Abstract 

Despite high raptor diversity and species of conservation importance, little is known 

about the structuring of raptor communities in tropical regions. I examined diversity 

across land uses, spatial niche overlap among species, community structure, and 

relationships between abundance and niche position/width within a diurnal raptor 

assemblage in Peru. Between April and December in 2008 and 2009, raptors were 

surveyed using a distance sampling transect method, and associated habitat data 

collected, in 70 randomly selected one square kilometer plots in Cerros de Amotape 

National Park, the Tumbes National Reserve and its buffer areas. A total of 563 

individual sightings of 19 diurnal raptor species were recorded. Abundance and 

richness were highest in the buffer zone and lowest in the national park. Mantel tests 

revealed no correlation between spatial niche overlap between species and body size 

differences, but there was a near-significant relationship between spatial niche overlap 

and dietary overlap. A Canonical Correspondence Analysis (CCA) of raptor species 

and habitat variables ordinated species according to latitude, elevation, percentages of 

vegetation cover, and, in some cases, individual tree species. Abundance was 

negatively correlated with habitat niche position (rarer species used „more extreme‟ 

habitats) and positively correlated with niche width (standard deviations of CCA axis 

scores). There was, however, considerable variation in the abundance-niche width 
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relationship, and I was able to identify species with narrower-than-expected niches. I 

then calculated „niche bottlenecks‟ for each species. There was a strong negative 

relationship between degree of bottleneck and abundance, with the small rare species 

having particularly narrow bottlenecks.  

 

3.2 Introduction 

Tropical ecosystems are the most diverse in the world (Wilson 1988), with 90% 

of all raptor species occurring wholly or partially in the tropics (Kennedy 1986). 

With around 36 species, the forests of extreme northwest Peru hold a 

particularly rich assemblage of raptor species (Piana et al. 2010) including the 

endangered Gray-backed Hawk (Leucopternis occidentalis). Thiollay (1994) 

considered this region as a priority area for raptor conservation based on the 

high diversity of raptor species and the occurrence of several endemics. As 

elsewhere in South America, the drier forests of Tumbes are particularly 

threatened - in western Ecuador and northwest Peru less than 5% of forest 

cover remains (Best and Kessler 1995).  

Birds or prey are difficult to study, the status and distribution of many species 

remain poorly known (Bildstein et al. 1998).  As top predators, raptors usually 

occur at low density and occupy large territories, and therefore may be sensitive 

to habitat degradation (Bierregard 1998, Watson 1998). Thiollay (1998) 

considered habitat loss, degradation and fragmentation as the main issues in 

raptor conservation in tropical Asia. 
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Although several studies have been conducted on tropical raptors, these have 

concentrated on the abundance, habitat associations and ecology of individual 

species (Whitacre and Thorstrom 1992) with relatively few attempts to describe 

raptor community composition (Thiollay 1996, Thiollay 2007, Carrete et al. 

2009). Studies attempting to identify factors that segregate sympatric raptor 

species have generally been oriented towards dietary structuring of 

communities (Iriarte et al. 1990) although there is evidence that vegetation 

cover and structure (Preston 1990), availability of nesting and perching sites are 

also factors that segregate (or aggregate) raptor species in the landscape 

(Janes 1985).  

Few attempts have been made to characterise and compare habitat niche 

dimensions such as niche position, width and overlap across raptor species (an 

exception is Thiollay 1993). In this chapter, I deal with the ideas of the 

Grinnellian or Hutchinsonian niche (the habitats within which a species is found, 

or the multi-dimensional „hypervolume‟ within which it is found) rather than the 

Eltonian niche (how a species fits into a community). Niche position can be 

defined as the typicality of the conditions used by a species (Gregory and 

Gaston 2000) and, in this study, reflects how extreme or „average‟ are the 

habitats used by a species relative to those available in the landscape. Niche 

width can be defined as the range of conditions used by a species (Gregory and 

Gaston 2000, Marsden and Whiffin 2003), and in this study reflects the 

proportion of the gradient of variability in a composite of habitat measures that 

is used by a species. Niche overlap is the degree to which two or more species 

share niches (Pianka 1974). That is the proportion of all geographical areas, 
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habitat parameters or resources shared by two taxa. In this study I compare 

spatial niche overlap, or the proportion of sites in which pairs of raptor species 

were recorded compared to those used by just one of the pair. These measures 

are seen as being critical drivers of biotic community make-up (Hofer et al. 

2004) and have important implications for conservation biology (Devictor et al. 

2010). For example, niche position is usually found to have a strong effect on 

abundance (Seagle and McCracken 1986, Marsden and Whiffin 2003) with 

extreme niche positions being associated with low abundance, which is itself 

associated with high extinction risk (Pimm 1988). Niche width is generally not 

thought to have strong influence on abundance (Gaston et al. 1997) but more 

important may be particularly narrow niche widths along certain niche 

dimensions. For example, if a species has a broad diet and uses a wide range 

of habitats for foraging, and yet has an extremely specialised breeding habitat 

(it has a narrow breeding habitat niche) then it may be particularly vulnerable to 

relatively small anthropogenic habitat changes if they occur on the dimension 

on which its niche is narrowest. I term this narrow niche a „niche bottleneck‟, 

and in this study it represents the combination of niche attributes along different 

niche dimensions that might restrict or constrain the presence of raptor species 

in the study area (Wiegand et al. 2008; Fort et al. 2009). In this chapter, I 

compare a species‟ habitat niche width across several habitat gradients to 

determine how severe any niche bottleneck might be.     

My aim was to examine the make-up of the diurnal raptor assemblage in 

Tumbes, northwestern Peru, in terms of abundance, spatial niche overlap 

across species, and the main environmental drivers of assemblage patterns. I 
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then look at the relationships between abundance and niche characteristics to 

determine if some species may be particularly susceptible to declines or local 

extinction due to their specialisation in particular habitats, or their intolerance of 

anthropogenic environmental changes that are underway in the area. I include 

an investigation into the extent to which individual species‟ habitat niches might 

be constricted on particular habitat gradients and whether such niche 

bottlenecks have an influence on local abundance. 

The aims of this chapter are: 1. To measure niche width, niche position, niche 

bottleneck, and spatial niche overlap within raptor species to assess the influence of 

niche characteristics in shaping the structure of the raptor community in northwest 

Peru. 2. To identify environmental and geographical variables that promote or constrain 

raptor species presence in the study area, and that segregate and/or aggregate them 

along different niche dimensions. 3. To use niche characteristics within species to 

identify those of conservation priority. 

3.3 Methods 

Nineteen species of raptors were detected during morning transect evaluations, 

but only fourteen were included in the analysis (those species that were present 

in seven or more plots). Species included were Turkey Vulture (Cathartes aura), 

Black Vulture (Coragyps atratus), King Vulture (Sarcoramphus papa), Bicolored 

Hawk (Accipiter bicolor), Crane Hawk (Geranospiza caerulescens), Gray-

backed Hawk (Leucopternis occidentalis), Great Black Hawk (Buteogallus 

urubitinga), Harris´s Hawk (Parabuteo unicinctus), Short-tailed Hawk (Buteo 

brachyurus), Zone-tailed Hawk (Buteo albonotatus), Black Hawk-Eagle 
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(Spizaetus tyrannus), Laughing Falcon (Herpethoteres cachinnans), Crested 

Caracara (Caracara cheriway) and Bat Falcon (Falco rufigularis). Species not 

included (all resident in the study area) were Fork-tailed Kite (Elanoides 

forficatus), Savanna Hawk (Buteogallus meridionalis), Roadside Hawk (Buteo 

magnirostris), Collared Forest Falcon (Micrastur semitorquatus) and American 

Kestrel (Falco sparverius). 

 

3.4 Statistical analysis  

Raptor abundance was expressed in two ways. The first was a simple 

encounter rate of both flying and perched birds expressed as number of 

individuals of each species recorded in the 1.8 km of transect within each 

square and then expressed as number of birds per 100 km. The second was an 

indication of raptor density derived through Distance sampling (Buckland et al. 

2001; Buckland et al. 2008) using DISTANCE 6.0 (Thomas et al. 2010). 

Recommended number of records for reliable density estimates with Distance 

analysis is around 100 (Buckland et al. 1993; Marsden 1999) so rare species or 

those with few records are usually left out of analyses.  

Some important assumptions are needed for distance sampling methods to 

work: 1. All birds on the line of the transect are detected with certainty. 2. Birds 

are detected at their initial position. 3. Distances are measured exactly. 4. The 

sample plots are representative of the entire survey region (Buckland et al. 

2001; Buckland et al. 2008). Data from both perched records and flying records 

were included in the analysis, to maximize sample size for individual species, so 
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my derived densities are more than likely overestimates of true bird density 

(Marsden 1999). However bird movements were independent from the observer 

and in most cases flying birds were soaring in circles, so they were moving 

slowly. For this, I was able to measure the distance from the transect to the 

centre of this circle with a laser range finder. My method does, however, 

attempt to account for differences in detectability across species and habitats. 

During surveys I focused on birds that were closer to the transect and distances 

to these birds were accurately measured with a range finder. I used 

Conventional Distance Sampling (CDS) of DISTANCE 6.0 to estimate absolute 

density of species. There was a significant positive correlation between 

encounter rates and density estimates for species (r = +0.83, df = 12, P < 

0.001). 

Differences in raptor encounter rates and species richness (number of species 

recorded within each km2) were tested across habitat types and land uses using 

Kruskal-Wallis ANOVAs. Spatial niche overlap between species‟ occupancy of 

km2 was calculated using the symmetric equation formula proposed by Pianka 

(1973)  

 

where pij and pik are the proportions of all records of the jth and kth raptor 

species within the ith km2, with values ranging from 0 (no overlap) to 1 (complete 

overlap); for this I used the number of plots in which a species was recorded. 
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Relationships between degree of spatial niche overlap between pairs of species 

and body size differences (Marquez et al. 2005), and dietary overlap between 

those pairs of species were examined using Mantel tests with the software 

PAST (Hammer et al. 2001). Dietary overlap data were taken from the Global 

Raptor Information Network -GRIN (2010) database and was expressed as the 

number of dietary items (from a list of nine categories: insects; crustacea; fish; 

amphibians; reptiles; birds; terrestrial mammals; bats; carrion) shared by each 

pair of raptor species. Significance level was set at 0.05.  

I used Canonical Correspondence Analysis (CCA) in PAST (Hammer et al. 

2001) to ordinate raptor species along the main community and environmental 

axes. CCA is an ordination method that incorporates habitat variables into the 

analysis so the axes of the final ordination are a linear combination of 

environmental variables and species data (Ter Brack 1986, Henderson and 

Seaby 2008). In CCA, explanatory variables are represented as vectors pointing 

to higher values of that variable; their relative lengths are directly proportional to 

their importance in influencing community structure (Ter Braak 1986, Grand and 

Cushman 2003). Only those 14 raptor species recorded in more than seven km2 

were included. Environmental variables entered were means of the variables 

recorded at each habitat plot along each transect (thus were averages within 

each km2). Counts of tree species recorded > 49 times were included (species 

were Ceibo, Polopolo, Guásimo, Algarrobo, Faique, and Madero).  

Values of habitat niche position were calculated for each raptor species by 

summing the absolute deviations of species centroids from the origin on each of 

the four main CCA axes. Niche widths were obtained from the standard 
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deviation values of the presence of species in each plot and canonical values 

for the first four axes (Carnes and Slade 1982) using SPSS 16.0 software 

(SPSS Inc. 2007).  Canonical values per axis were considered as the 

dependent variable.  

 

3.5 Results 

3.5.1 Raptor abundance/richness and spatial distribution 

 

A total of 563 individual sightings of 19 raptors species were recorded along 

transects, but only species with more than seven records (see Methods) were 

included in subsequent analyses of species abundance, spatial niche overlap, 

niche position, widths and bottlenecks. The community was dominated by two 

vultures Turkey Vulture -148 records, Black Vulture -139 records, along with 

Harris´s Hawk -55 records, Laughing Falcon -44 records, and the endangered 

Gray-backed Hawk -34 records. In all, these five species contributed 75% of all 

raptors recorded. Among Accipitridae and Falconidae species, Harris´s Hawk 

was detected in 32 plots, Laughing Falcon in 30 and Gray-backed Hawk in 17.  

Raptor encounter rates and species richness did not differ across the four 

habitat types (Kruskal-Wallis non-parametric ANOVA), but did differ (both 

including and excluding vultures) across the three land use regimes: Cerros de 

Amotape National Park, Tumbes National Reserve and buffer areas. Encounter 

rates and species richness tended to be highest in the buffer zone and lowest in 

the national park (Table 1).  
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Table 1. Raptor encounter rates (median number of raptor individuals encountered 

km-² with inter-quartile range in parentheses) and species richness (median 

number of raptor species recorded km-² with inter-quartile range in parentheses) in 

different habitat types and land uses. Analyses were performed including and 

excluding the dominant vulture species Turkey Vulture and Black Vulture. n = 

number of sample squares in each habitat type/land use. * P<0.05, ** P<0.005, ns 

not significant. 

_________________________________________________________________ 

                                         Vultures included          Vultures excluded 

_________________________________________________________________ 

Habitat type              Encounter rate     Richness         Encounter rate     Richness    

Dry savanna n=9             9 (4-14)             4 (2-5)        2 (2-4)             2 (1-3) 

Dry deciduous n=26       6.5 (4-13)          4 (2-5)               3.5 (2-6)          2 (2-4) 

Deciduous n=17              7 (3-13)             4 (2-6)          4 (2-7)          3 (2-4) 

Semi-decid. n=18           5 (2-8)            3.5 (2-4)        3 (2-4)         2.5 (1-4) 

Difference          H=3.9 ns        H=1.5 ns       H=4.7 ns        H=3.7 ns 

Land Use  

National park n=32          4.5 (2-9)  3 (2-4)        3 (2-5)          2 (1-4) 

National reserve n=6        7 (4-12)  4 (2-5)        4 (2-6)         2.5 (1-4) 

Buffer zone n=32       16.5 (12-27)     6.5 (4-9)            7.5 (4-13)         4.5 (2-7) 

Difference            H=13.1 **  H=9.2 *        H=8.3 *        H=5.0 ns 

________________________________________________________________ 
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Spatial niche overlap between pair of species is presented in Table 2. There 

was no significant correlation between measures of spatial niche overlap 

between species and the differences in their body masses (Mantel test; r = 

+0.04, P = 0.32). There was, however, a near-significant positive correlation 

between spatial niche overlap and degree of dietary overlap (Mantel test; r = 

+0.17, P = 0.09). 
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Table 2. Measures of spatial niche overlap (Pianka 1973) across fourteen abundant raptors species in Tumbes, northeast 

Peru.     

______________________________________________________________________________________________________________                                                                                                 

                Black     King        Bicolored   Crane     Great      Harris‟s     Gray-      Short-      Zone-      Black    Laughing   Crested      Bat 

                Vulture   Vulture    Hawk          Hawk      Black      Hawk        Backed   tailed       tailed       Hawk-   Falcon       Caracara    Falcon 

                                                                                Hawk                       Hawk      Hawk       Hawk      Eagle                                                                                                                                                                                                                                                                                                                                                                         

Turkey       0.68      0.20          0.12          0.20         0.34     0.81         0.29        0.38          0.44        0.20       0.30          0.33           0.32                   

Vulture 

Black                      0.33          0.02          0.10         0.35         0.63         0.30        0.47         0.38         0.28       0.20          0.34           0.26                               

Vulture 

King                                         0.11          0.00         0.33         0.13         0.28       0.20          0.03        0.24       0.24          0.09            0.19                                        

Vulture                                             

Bicolored                                                  0.07         0.16         0.18         0.00       0.00          0.07        0.08        0.15         0.00            0.00                                                                                          

Hawk                                                                 

Crane                                                                       0.00         0.11          0.14      0.19          0.00        0.10        0.04         0.00            0.00                              

Hawk 

Great Black                                                                              0.52          0.29      0.42          0.25        0.27        0.19         0.13            0.23                              

Hawk 



 

53 
 

Harris´s                                                                                                       0.22    0.42          0.27        0.31         0.38        0.60            0.33                          

Hawk       

Gray-backed                                                                                                          0.38          0.39        0.26         0.28        0.06            0.42                                                                                        

Hawk 

Short-tailed                                                                                                                              0.34       0.36         0.24        0.20            0.21                        

Hawk 

Zone-tailed                                                                                                                                             0.10         0.36        0.00           0.17                 

Hawk 

Black                                                                                                                                                                       0.25        0.00          0.07                    

Hawk-Eagle 

Laughing                                                                                                                                                                                0.05          0.21                 

Falcon             

Crested                                                                                                                                                                                                   0.00                                                                                                                                                                       

Caracara 
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3.5.2 Raptor community and vegetation ordination 

 

The four most important CCA axes together accounted for 70.4% of overall 

variation in the raptor and environmental data. Figure 8 shows correlations 

between individual environmental variables and numbers of key tree species 

recorded within plots, and scores on axes 1 and 2, and Table 3 provides 

descriptions of the four main CCA axes. Elevation, latitude, tree sizes (DBH and 

height), percentage of vegetation cover between 5 to 15 m, and numbers of tree 

species such as Guasimo and Polopolo were among the most powerful 

variables to separate raptors species (Figures 8 and 9).  

Table 3. Description of the four main axes of CCA. 

      Axis (eigenvalue)             Strongest correlation  Interpretation 

      1 (0.25) Elevation (+), Tree DBH (+), Increasing altitude with 

 % vegetation cover 5-15 m (+) greater prevalence of 

   Latitude (-), and Algarrobo (-)      large, tall trees and fuller  

                    mid-level cover in south. 

       2 (0.15)   Tree DBH (+), Tree Height (+),     Large trees with sparse 

               Guasimo (-), % vegetation            ground cover and absence 

              cover 0-1m (-).             of Guasimo trees. 

       3 (0.12)   Latitude (-), % vegetation cover    Higher areas south of  

          1-5m (-), Ceibo (+),           study site with open 

             Elevation (+).              low strata and large  

                                      numbers of Ceibo trees. 
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      4 (0.08)           % vegetation cover 1-5m (+),  Relatively flat areas with 

             Madero (+), Gradient (-),    dense low strata where  

             Polopolo (-).     Madero is present and  

                    Polopolo absent. 

  

A few species form outliers on one or more axes (Table 4). Black Hawk-Eagle 

had a very high positive score on Axis 1 (an association with large trees at 

higher altitudes), while Crested Caracara had a high negative score. Bicolored 

Hawk had an extreme positive score on Axis 2 (an association with large trees 

and sparse ground cover) and an extreme negative score on Axis 3 (an 

association with lower elevation forest with dense lower strata). Several 

species, namely Black Vulture, Turkey Vulture, Harris´s Hawk, Gray-backed 

Hawk, Short-tailed Hawk and Laughing Falcon have unremarkable scores on 

most or all axes indicating that they tend to occupy average habitats. In 

contrast, Bicolored Hawk appears to have extreme/unusual habitat positions on 

several axes.  

 

 

 

 

 



 

56 
 

Table 4. Centroid positions for each raptor species on each of the four main CCA axes. 

Values < 0.10 are not shown.  

_____________________________________________________________________ 

Species               Axis 1       Axis 2       Axis 3       Axis 4 

_____________________________________________________________________ 

Turkey Vulture                          -0.15 

Black Vulture                       -0.27        -0.27           +0.25                   

King Vulture                        +0.54        -0.33          -0.21        +0.40 

Bicolored Hawk                            +0.49        +1.07         -1.10        +0.88 

Crane Hawk                                 -0.12         +1.33           -0.45 

Great Black-Hawk                      +0.49                +0.15 

Harris´s Hawk                               -0.42                       -0.22 

Gray-backed Hawk                      +0.34                         +0.28 

Short-tailed Hawk                     +0.35        -0.43    +0.45       -0.40  

Zone-tailed Hawk                      -0.44        -0.65           -0.85       -0.55  

Black Hawk-Eagle                       +1.29                          +0.29      -0.11 

Laughing Falcon                                                              -0.21       -0.30 

Crested Caracara                       -1.07         +0.35           +0.97      +0.32 

Bat Falcon                      -0.42         -0.70     -0.36       +0.26  

_______________________________________________________________
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Figure 8. Ordination of habitat variables on the first two canonical axes of CCA. Algarrobo, Faique, Madero, Ceibo, Guasimo, 

and Polopolo are the numbers of each tree species recorded within the km2 (see Study area for details of these trees‟ 

ecological significance). 
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Figure 9. Raptor species ordination in the two first axes of CCA. 

 



 
 

3.5.3 Niche characteristics 

                                                                                                            

Density estimates (derived using distance sampling and averaged across all 

samples within the study area), niche width, niche position and bottlenecks are 

presented for each species in Table 5. As expected, there was a significant 

negative correlation between species density and habitat niche position (rs = -

0.64; P = 0.02) – common species had centroids usually close to the origin on 

the four CCA axes.  

Abundance (density) was positively correlated with niche width (rs = +0.72; P < 

0.01), although there was considerable variation in the abundance-niche width 

relationship for individual species (Figure 10). Black Vulture had a density 

estimate only one-third that of Turkey Vulture and yet they had similar niche 

widths. Of the rare species, Bat Falcon, Zone-tailed Hawk, King Vulture and 

Crested Caracara had unusually narrow niches and Bicolored Hawk and Crane 

Hawk relatively wide habitat niches.  
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Table 5. Density estimates (95% confidence intervals), detection function (DF), 

niche position, width and bottleneck for raptors in the Tumbes, Peru. Niche 

bottleneck was calculated as deviation of the minimum niche width on any 

single axis from the mean niche width (on all four axes) divided by this mean. 

Thus large values indicate a narrow minimum niche width. Also shown is the 

axis on which niche width was narrowest. Detection functions and expansion 

series (DF): Half-normal (HN), Uniform (U), Hazard rate (H), Cosine (C), 

Polynomial (P), Hermite (He). 

____________________________________________________________________ 

Species   Density            DF Niche  Niche    Niche     
    (Inds. km-2)   position  width    bottleneck    

____________________________________________________________________  

Turkey Vulture  2.4 (1.6-3.6)          UC 0.61  3.14    0.22  AX1 

Black Vulture      0.78 (0.49 - 1.3)    HNHe 1.42  1.95       0.12  AX1 

King Vulture                 0.14 (0.07 - 0.27)  UC 2.24  0.63    0.38  AX1 

Bicolored Hawk            0.13 (0.06 - 0.30)  UC 7.27  1.93    0.75  AX1 

Crane Hawk                 0.49 (0.23 -1.04)   HNC 2.99  7.50    0.54  AX1                                                                                                            

Great Black Hawk     0.36 (0.20 - 0.67)   HNHe 1.56  1.60    0.31  AX2 

Harris´s Hawk     0.85 (0.57 - 1.3)     UC 0.76  2.10    0.10  AX1 

Gray-backed Hawk    0.29 (0.17 - 0.50)   UC 1.89  2.63    0.24  AX1 

Short-tailed Hawk      0.11 (0.06 - 0.21)   UC 2.88  1.00    0.19  AX3                                                                                                 

Zone-tailed Hawk               0.04 (0.02-0.09)    HNC 3.45              0.29      0.45  AX2 

Black Hawk-Eagle     0.12 (0.07 - 0.20)   UC 2.70  1.43    0.38  AX2 

Laughing Falcon     0.33 (0.23 - 0.48)   UC 1.29  2.82       0.34  AX1 

Crested Caracara       0.31 (0.14 - 0.70)   HP 3.46  0.10    0.27  AX2 

Bat Falcon       0.08 (0.03 - 0.17)   UC 2.21  0.10    0.72  AX2 

____________________________________________________________________ 
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The most important bottlenecks in niche width (those axes where individual 

species had their narrowest niche) were on Axes 1 and 2. There was a 

significant positive relationship between degree of bottleneck and overall niche 

position (rs = +0.59; P = 0.03) and a negative relationship with abundance (rs = -

0.56; P = 0.04). Again, there was variation across species in the abundance-

bottleneck relationship (Figure 10) with the small rare species Crane Hawk, Bat 

Falcon and Bicolored Hawk having particularly narrow bottlenecks and with 

Harris´s Hawk, Black Vulture, Short-tailed Hawk, Turkey Vulture, Gray-backed 

Hawk and Crested Caracara showing little constriction on any CCA axis. 
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Figure 10. Scatterplot of the relationships between log transformed species 

densities and log +1 species´ habitat niche width and log transformed species´ 

bottlenecks. Densities were estimated using distance sampling and are 

averaged across all 70 one-km² squares within the study site. 
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3.6 Discussion 

3.6.1 Community assemblage 

 

I was able to separate species in terms of their niche positions and specifically 

in terms of their associations with environmental variables within the study area. 

Species preferring habitats with large trees (e.g. Bicolored Hawk) separated 

from birds that preferred dry forests (e.g. Crested Caracara), and species 

preferring borders (e.g. Laughing Falcon). Some inferences regarding habitat 

preferences can be made between community members that share similar 

morphometric characters: Bicolored Hawks and Crane Hawks, both species 

with long tails, long tarsi and small body mass (but with different diets – see 

Thorstrom and Quixhán 2000, Sutter et al. 2001) were associated with very high 

scores on axis 2 (forest with large trees but sparse ground cover). Black Hawk-

Eagle, another species with long tail and a forest specialist (Thiollay 2007) was 

associated with increasing elevation and was relatively common in high canopy 

semi deciduous forests, while the morphologically similar Harris´s Hawks were 

associated with dryer habitats in the lowlands where Algarrobo trees dominated. 

Gray-backed Hawks and Laughing Falcons similar in body mass, body length 

and diet (Vargas 1995, Valdez 1996) were relatively abundant in borders but 

segregated geographically and by elevation, percentage of vegetation cover 

from 5 to 15 meters, and canopy height.  
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3.6.2 Niche relationships 

 

There was a wide range of variation in habitat niche width among species, and 

most species appear to be generalists in the use of space. I acknowledge that 

my inclusion of aerial individuals was not ideal for two reasons. First it may 

inflate density estimates for the species, although I do not discuss absolute 

density in this chapter, rather species-specific densities relative to each other, 

and „corrected‟ for differences in detectability with the use of distance sampling 

(e.g. Buckland et al. 2001). Second, my inclusion of aerial birds means that 

individuals I recorded over a particular square did not necessarily belong to it 

since they may be flying over, rather than using the area for hunting. Several 

studies (Seagle and McCracken 1986, Gregory and Gaston 2000, Marsden and 

Whiffin 2003) found no relationship between bird abundance and niche width 

(none of the above focused on raptors). In this study I found a significant 

positive relationship between habitat niche width and species abundance. 

Analysis of data from Table 2 in Thiollay´s (1993) study of raptors in India, also 

reveals a positive significant relationship between habitat niche width and 

species abundance (rs  = 0.76; P = 0.002) indicating that, in these two raptor 

communities, species that are able to function in a wider range of habitats are 

likely to be more abundant overall (Table 5). 

Spatial niche overlap (Table 2) indicates how two species shared geographical 

space with high values indicating more affinities in the use of spatial resources 

(Pianka 1974). In this study species that were usually detected at borders and 

degraded areas showed greater niche overlap between them while it was lower 

between forest interior species. Mantel tests revealed no correlation in spatial 
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niche overlap between species and body size differences, but there was a near-

significant relationship between spatial niche overlap and dietary overlap. 

 

3.6.3 Conservation implications 

 

There were significant differences in raptor species diversity and abundance 

within the three different land use regimes in the study area. Raptors were more 

diverse and abundant in the buffer areas followed by the reserve and the park, 

despite the last being under the highest level of protection (SPDA 2004). In 

extreme northwest Peru protection of forested areas outside the TNR and the 

CANP can help preserve habitats that are fundamental to maintain this highly 

diverse raptor community and the species they support. If properly managed, 

the recently created Tutumo-Matapalo Conservation Area, in the buffer area 

north of the CANP can help to achieve this. 

Kruger and Radford (2008) identified body weight, clutch size and habitat niche 

width as the three most important variables that predict extinction risk among 

Accipitridae. Therefore, in this study, species with higher values on habitat 

niche width (Crane Hawk, Turkey Vulture, and Laughing Falcon) might be of 

least conservation concern within the community. Great Black Hawks and Black 

Hawk-Eagles had the highest body mass among Accipitridae, while Gray-

backed Hawks had the lowest reproductive rate (0.8 fledged young per nest; 

Vargas 1995). Black Hawk-Eagles had a lower habitat niche width value and a 

higher niche position than Great Black Hawks and within the community, is 

probably the most susceptible to habitat loss, particularly of semi-deciduous 

forest that in extreme northwest Peru only occur above 600 m in the CANP and 
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that have been severely destroyed in adjacent Ecuador (Dodson and Gentry 

1991; Best and Kessler 1995). Deciduous forests inside the CANP are probably 

the largest and more continuous tracts of this habitat still remaining in the whole 

Tumbesian zone and might be crucial for the species persistance in this centre 

of endemism. 

Niche bottlenecks for each species show the greatest constriction of a species‟ 

niche width on any of the axes (Table 4). There was a very strong positive 

relationship between bottleneck width and abundance, with the small rare 

species Crane Hawk, Bat Falcon and Bicolored Hawk having particularly narrow 

bottlenecks. This has important implications for conservation management. If I 

can identify the axis on which a species has its narrowest niche width, then I 

can use this information to guide habitat management for that species (e.g. 

Botham et al. 2011). Specifically, I can increase the proportion of habitat within 

the study area that falls within the range of values (e.g. a range of canopy 

closure values or the numbers of a preferred tree species) that the species 

uses. Habitat management that brings extra amounts of land cover within the 

species‟ (realised) niche may be more important on the bottleneck axis than on 

other habitat axes because the species has a narrower range of tolerance on 

that niche axis. Using the example of Bicolored Hawk above, managing habitat 

so more areas fall within its niche position on Axis 1 may be most beneficial to it 

– and this corresponds to increases in higher altitude forest that has large trees 

and fuller mid-level vegetation cover (see Table 3).  

Almost all species in this study were wide ranging occurring over much of the 

neotropics. In Peru, these species are widespread east of the Andes but are 

also present in Tumbes. The only range restricted species, the endangered 
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Gray-backed Hawk (BirdLife International 2011) was the fifth most often 

recorded species, but had only the eighth highest density estimate (Table 5). 

This species had an „average‟ niche position, and had the fourth widest habitat 

niche with little niche constriction. In Ecuador the species has been recorded in 

primary and secondary forests, forest borders, and adjacent agricultural and 

pasture areas along its range (Vargas 1995, Freile et al. 2004) thus supporting 

the idea that it has a wide habitat niche. Despite this, the species population 

has, apparently, been in continual decline in Ecuador due to forest destruction 

for agriculture and cattle ranching (Vargas 1995, BirdLife International 2011). 

Although it is now evident that the species can use degraded areas, it is not 

known whether it can breed there, so future research is needed to clarify this. 
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Chapter 4: Habitat associations within a raptor community in a 

protected area in northwest Peru 

______________________________________________________ 

4.1 Abstract 

Little is known about habitat characteristics that influence the distribution of 

raptors in the neotropics. I used logistic regressions (GLMs) to obtain habitat 

distribution models for eleven raptor species occurring in the Cerros de 

Amotape National Park, the Tumbes National Reserve and its buffer areas in 

extreme northwest Peru. Between May 2008 and December 2009, raptors were 

surveyed along transects, and associated habitat data collected in 70 randomly 

allocated 1 square kilometre plots. Twenty eight habitat models were obtained 

for all species and twelve habitat variables were included. Spatial 

autocorrelation in the distribution of species was measured through Moran´s I 

and later habitat models were ranked using Akaike´s Information Criterion for 

small sample size (AICc). Best models obtained for six species included 

measured percentage of vegetation cover at different strata, while elevation and 

latitude were included in five. Additionally, sixteen models included variables 

that measured percentage of vegetation cover and all but two species included 

an autocovariate. These findings suggest that vertical structure of forested 

areas is of particular importance for raptors in the study site. For the 

endangered Gray-backed Hawk, a species associated to semi-deciduous 

forests east of the study site, I recommend that forest areas north and east of 

the Cerros de Amotape National Park and close to Ecuador should be protected 

while cattle grazing in these areas should avoid further destruction of remaining 

forest patches.   
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4.2 Introduction 

The identification of factors that determine species presence in the landscape is 

key for the conservation and maintenance of biological diversity (Cleary et al. 

2005). In recent years, modeling of species distribution has become an 

important tool in conservation biology (Guisan and Thuiller 2005; Wu et al. 

2006), with General Linear Models (GLM) becoming very popular for predicting 

species richness and distribution (Lehmann et al. 2002; Syartinilia 2008). 

GLM are widely used in applied ecology and conservation ecology to model 

species distribution with presence and absence data (Guisan and Zimmermann 

2000; Guisan and Thuilller 2005; Austin 2007) and recently have been used to 

model breeding habitat, habitat use and areas of conservation importance for 

raptor species in temperate environments (Wu et al. 2006; Lopez-Lopez et al. 

2007).  

Diurnal raptors cover a broad spectrum of ecological requirements and are 

considered good indicators of changes in ecosystems (Thiollay 2006c) and 

while habitat destruction is regarded as the most important threat for forest 

raptors (Thiollay 1985), habitat loss, fragmentation and degradation also affects 

the survival of tropical species (Thiollay 1993). Understanding how species are 

distributed in the landscape and which factors may affect such distributions is 

important for the monitoring and conservation of biodiversity and this knowledge 

can also be applied to the protection of species (Wu et al 2006).  

Habitat modeling of raptors inhabiting temperate ecosystems has contributed to 

assessing the role of different habitat attributes that influence the occurrence 

and distribution of single raptor species (Martinez et al. 2003; Donazar et al. 
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1993), in the design of conservation plans for endangered and non-endangered 

species (Muñoz et al. 2005; Lopez-Lopez 2007) and to identify habitat variables 

that better contribute in maintaining the assemblage of the raptor community as 

a whole (Bustamante and Seoane 2004). However, it seems that no attempts 

have been made to use similar methods in the construction of habitat models 

for neotropical raptor species. 

Located in extreme northwest Peru, the North West Biosphere Reserve 

(NWBR) holds a particularly rich assemblage of raptor species (Piana et al. 

2010), including the Gray-backed Hawk. Despite its status as a conservation 

area, forests inside the reserve are subject to several human induced activities 

such as cattle grazing and logging; particularly in the Tumbes National Reserve 

and buffer areas, where vast extensions of forest have been removed for the 

establishment of cattle pastures. It is still uncertain how forest destruction and 

fragmentation affects raptors distribution in this biome. Modeling raptor species 

distributions through its relation to habitat variables could help to understand 

how habitat modifications affect raptors occurrence in this part of the neotropics.  

The aims of this chapter are: 1. To identify the most important floristic and 

geographical variables that influence species presence and that also shape the 

assemblage of the community in the NWBR, while accounting for spatial 

autocorrelation. 2. To develop habitat distribution models through the use of 

logistic regression for a guild of eleven raptor species that inhabit the dry, 

deciduous and semi-deciduous forests of extreme northwest Peru. 3. To use 

these models to define management interventions for the species and areas in 

northwest Peru; particularly those of conservation concern. 
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4.3 Methods 

Data on raptors and associated habitat measures were collected during two 

field seasons April-December 2008 (31 one-km² square plots) and April-

December 2009 (39 one-km² square plots). All seventy (70) one-km² square 

plots were evaluated in the morning (see Field Methods). Bird-habitat 

association models were obtained for species of raptors that were recorded in 

more than 10 km squares. These species were: Turkey Vulture, Black Vulture, 

King Vulture, Crane Hawk, Great Black Hawk, Harris´s Hawk, Gray-backed 

Hawk, Short-tailed Hawk, Black Hawk-Eagle, Laughing Falcon, and Crested 

Caracara. Models were built using a binomial General Linear Model (GLM) 

(binary logistic regression) between habitat variables and the presence/absence 

of individuals using SAM 3.1 software (Rangel et al. 2006). GLMs (McCullagh 

and Nelder 1989) are mathematical extensions of linear models that assume a 

relationship between the mean of the response variable (raptor species 

presence) and the linear combination of the explanatory variables (habitat 

variables) (Guisan et al. 2002). GLMs are suited for analyzing ecological 

relationships between the mean of a response variable and the linear 

combination of one or more explanatory variables through regression analyses 

(Guisan et al. 2002).  

 

4.3.1 Statistical analyses  

 

To reduce any effects of multicollinearity (Zuur et al. 2010), pairs of habitat 

variables were tested for correlation using Spearman´s rank correlation test in 

PAST software (Hammer et al. 2001). Pairs of variables with absolute rs values 
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higher than 0.75 were considered highly correlated so one variable (the one 

with less biological sense in the model) was removed from analysis (Lor and 

Malecki 2006).  

In GLMs, the lack of spatial independence in data should be addressed to avoid 

issues of spatial pseudoreplication (Liebhold and Gurevitch 2002; Dormann 

2007). This can be achieved by adding a spatial autocorrelation term to the 

linear predictor, by sampling at a given spatial distance to avoid autocorrelation 

or by sampling at the same intensity in areas of known and unknown 

occurrence of target species (Guisan and Thuilller 2005; Dormann 2007). 

Spatial autocorrelation, the tendency of neighbouring samples units to be more 

similar than those expected for randomly associated observations (Lichstein et 

al. 2002), affects the assumption of independence of samples and of identically 

distributed errors (Fielding and Bell 1997; Legendre 1993; Dormann et al. 

2007), inflating type I errors. I calculated spatial autocorrelation in the 

distribution of raptor species across the study area through Moran´s I (Moran 

1950) using Spatial Analysis in Macroecology (SAM) 3.1 software (Rangel et al. 

2006). Distances between pairs of squares were grouped into five classes and 

set to a maximum of 25 kilometres, each class having equal number of pairs. 

Significance was tested using 200 permutations and a Moran´s I correlogram 

(Legendre 1993) was produced for each species (Figure 11).  

Habitat variables selected for analysis were: Latitude, longitude, elevation, 

gradient, tree height, percentage of vegetation cover between 0 to 1 m, 

percentage of vegetation cover between 1 to 5 m, percentage of vegetation 

cover between 5 to 15 m, and presence of Polopolo, Ceibo, Algarrobo and 

Guasimo trees. Best habitat models were selected using Akaike´s Information 
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Criterion (AIC) values corrected for small samples (AICс) (Akaike 1973; 

Burnham and Anderson 2002); only those models with a difference in AICс 

values of less than two (compared to the model with the lowest AICc value, 

namely zero) were considered as the best ones and included in the results 

(Burnham and Anderson 2002). Additionally Akaike weights (Wi); a measure of 

the strength of each model, sensitivity (the proportion of correctly classified 

presences) and specificity (the proportion of correctly classified absences) were 

calculated for each model (Burnham and Anderson 2002). 

  

4.4 Results 

4.4.1 Habitat models 

 

All habitat models selected were significant with P values ranging from 0.0047 

(Gray-backed Hawk) to 0.0001 (Crane Hawk, Black Hawk-Eagle, Crested 

Caracara). The number of selected models per species, using differences on 

AICc values (∆AICc = 2) varied from four (Turkey Vulture, Harris´s Hawk, 

Laughing Falcon) to one (Great Black Hawk, Short-tailed Hawk and Crested 

Caracara). In all, 28 models were selected considering all raptor species. 

Sensitivity of models ranged from 0.875 (Black Hawk-Eagle) to 0.567 (Laughing 

Falcon) and specificity ranged from 0.917 (Crested Caracara) to 0.50 (Turkey 

Vulture). 

Habitat variables that were related to floristic characteristics (percentage of 

vegetation cover at different heights, tree height, and tree species) appeared in 

more models than geographic variables (elevation, inclination, latitude, and 

longitude). Among floristic variables, percentage of vegetation cover between 5 
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to 15 m and tree height were significant in six and three models respectively 

while percentage of vegetation cover from 1 to 5 m was significative in one. 

Among tree species, Ceibo was significant in three models, Polopolo in two and 

Guasimo in one. The most important geographical variables in determining 

raptor species presence and absence were elevation (significant in thirteen 

models), latitude (significative in five), and longitude (significant in four) (Table 

6). 

The three vulture species were positively associated with values of ground (0 to 

1 m) and mid level (1 to 5 m) vegetation cover, with Turkey Vulture particularly 

associated with decreasing values of vegetation cover from 5 to 15 m. Of these 

species, Black Vulture and King Vulture were negatively associated with values 

of tree height. Best models for carrion feeder always included parameters 

associated with vegetation cover, except for the Crested Caracara which only 

included elevation and latitude; both negatively associated with species 

presence.   

Among Accipitridae, elevation appeared in all models obtained for Crane Hawk, 

Harris´s Hawk and Black Hawk-Eagle. The Gray-backed Hawk was positively 

associated to longitude and negatively associated to the presence of Algarrobo 

trees. Great Black Hawk and Short-tailed Hawk were positively associated to 

Guasimo and the Laughing Falcon negatively to Ceibo trees. 

 

4.4.2 Spatial autocorrelation 

 

Spatial autocorrelation on the distribution of the eleven raptor species that were 

modeled was low. (Figure 11). Moran´s I values ranged from a maximum of 
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0.062 (Black Vulture) to a minimum of -0.086 (Black Hawk-Eagle). Additionally, 

P values in all correlograms were not significant at any given distance for any 

species yet it was nearly significant for Black and Turkey Vulture (P = 0.056 and 

P = 0.083 respectively) at distances close to 10 km and for Black Hawk-Eagle 

(P = 0.072) at distances close to 13 km. Lower AICc values were obtained with 

the inclusion of a spatial autocorrelation variable in the logistic regression 

models of all but two species (Great Black Hawk and Black Hawk-Eagle). 

Additionally, there was no significative correlation between species body mass 

and the distance were Moran´s I was higher (rs = -0.42; P = 0.2). 
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Table 6: Habitat models and associated statistics for eleven species of raptors presence/absence in northwest Peru. The + or – 

indicate the species relationship with the response variable. AICc values are AIC values corrected for small samples; ΔAICc shows 

the difference between values of AICc best fitting models and that of lower AICc value. Akaike weights (Wi), Sensitivity (Sens.) and 

Specificity (Spec.) values are shown.  

Species                Model No.                            Variable                                               A
 
ICс           ΔAICc           Wi             Sens.            Spec.         P 

Turkey Vulture           1               -ACⁿˢ, +%cov 1_5ⁿˢ, -%cov 5_15**                          84.27             0              0.27          0.841           0.500        *** 

N = 44                           

                                   2              -ACⁿˢ, -%cov 5_15**                                                 84.49           0.22             0.25          0.864            0.538          ***      

                                       

                                   3              -ACⁿˢ, -Inclinⁿˢ, +%cov 1_5 ⁿˢ, -%cov 5_15**           84.59           0.32             0.24          0.818            0.577           *** 

 

                                   4              -ACⁿˢ, -Inclinⁿˢ, -%cov 5_15**                                   84.62          0.35             0.23           0.841           0.577           ***  

 

Black Vulture              1               -ACⁿˢ, -Elev*, -TreeH*, +%cov 0_1ⁿˢ                       93.25             0               0.43           0.706           0.639           **        

N = 34 

                                   2               -ACⁿˢ, -Elev*, -TreeH*                                              93.60          0.35            0.36           0.676           0.722           ** 
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                        3                -ACⁿˢ, -Elevⁿˢ, -TreeH**, +%cov 0_1ⁿˢ,                94.78           1.53             0.20           0.676            0.694          ** 

              +Algarroboⁿˢ  

 

King Vulture               1                 -AC*, -Lat*, -TreeHⁿˢ, +%cov 1_5*, -Ceiboⁿˢ       74.01             0                0.61           0.692           0.807           ** 

N = 14                              

  2                 -AC*, +Elev*, -TreeHⁿˢ, +%cov 1_5ⁿˢ ,-Ceiboⁿˢ    74.91           0.90            0.38           0.692           0.825           ** 

 

 

Crane Hawk              1                -AC**, -Elev*, +%cov 5_15*, +Polopolo*               57.71             0               0.59            0.8               0.9              *** 

N = 10                            

  2                 -AC*, -Elev*, -%cov 1_5ⁿˢ, +%cov 5_15*,            58.46           0.75            0.40            0.8               0.9              *** 

+Polopolo*                                                       

 

 

Great Black               1                  +Lat**, +Guasimo*                                               72.68              0              1                0.647           0.679          ** 

Hawk 

N = 17                                    
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Harris‟s Hawk           1                   -ACⁿˢ, -Elev***, -Lat**, -Long*                              89.57             0              0.41            0.719          0.632         *** 

N = 32 

                                  2                  -ACⁿˢ, -Elevⁿˢ, -TreeHⁿˢ, -Latⁿˢ, -%cov 5_15 ⁿˢ    90.97           1.40           0.20            0.781           0.711        *** 

                  

                                  3                  -ACⁿˢ, -Elev***, -TreeHⁿˢ, -Lat*, -Long ⁿˢ              91.03          1.46           0.19            0.719            0.605       *** 

 

                                  4                  -ACⁿˢ, -Elev**, -TreeHⁿˢ, -Latⁿˢ                             91.05          1.48           0.19            0.719            0.605       *** 

 

 

 Gray-backed            1                   -ACⁿˢ, +Long**, -Polopoloⁿˢ, -Algarroboⁿˢ           76.45             0             0.47            0.706             0.642       ** 

 Hawk   

 N = 17                      2                   -ACⁿˢ, +Long**, -Guasimoⁿˢ, -Algarroboⁿˢ           77.59          1.14           0.27            0.647             0.66         ** 

 

                                  3                 -ACⁿˢ, +Elevⁿˢ, +Long**, -Algarroboⁿˢ                   77.67          1.22           0.25            0.765             0.642       ** 
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 Short-tailed Hawk    1                  -AC*, -Latⁿˢ, +Guasimo**                                      63.07             0            1                0.636              0.831       ** 

 N = 11 

 

 Black Hawk-Eagle    1                  +Elev***, +%cov 0_1ⁿˢ                                         51.65             0            0.39           0.875              0.833       *** 

 N = 17                          

  2                  +Elev***, -TreeHⁿˢ, +Guasimoⁿˢ                           51.88           0.23        0.34            0.875              0.87         *** 

                         

                                  3                  +Elev***, +%cov 0_1ⁿˢ, +Guasimoⁿˢ                    52.35           0.70        0.26            0.875              0.852       *** 

 

 

Laughing Falcon        1                -ACⁿˢ, -%cov 5_15ⁿˢ, -Ceiboⁿˢ, +Polopoloⁿˢ         92.03             0            0.31            0.667               0.80         ** 

N = 30                            

   2                -AC*, -%cov 5_15ⁿˢ, -Ceibo*                               92.16            0.13        0.29            0.567               0.70         **    

 

                                   3                -AC*, -Ceibo**, -Guasimoⁿˢ                                 92.23            0.20        0.27             0.667              0.725       ** 

 

                                   4                 -AC**, -%cov 0_1ⁿˢ, -%cov 5_15ⁿˢ, -Ceibo**,     93.81            1.78        0.12             0.60                0.70         ** 

                                                       +Polopoloⁿˢ       
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Crested Caracara      1                 -AC*, -Elev*, -Lat**                                                42.46             0            1                 0.7               0.917          ***         

 N = 10 

___________________________________________________________________________________________________________________ 

AC= auto covariate term; %cov 0_1= percentage of vegetation cover from 0 to 1 m; %cov 1_5 = percentage of vegetation cover from 1 to 5 

m; %cov 5_15 = percentage of vegetation cover from 5 to 15 m; TreeH = Tree height; Lat = Latitude; Long = Longitude; Elev = Elevation; 

Inclin = Gradient; Algarrobo, Ceibo, Guasimo and Polopolo are the names of each tree species. See the Study area section for a more 

detailed description. 

NS, not significant; * P < 0.05; ** P < 0.01; *** P < 0.001. 
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Figure 11: Moran´s I Correlograms for eleven species of raptors from northwest Peru. Axis X show distance in kilometers and Axis 

Y show values of Moran´s I. 
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4.5 Discussion 

4.5.1 Habitat models 

 

Distribution of raptor species in the environment are a consequence of several 

interacting variables (Janes 1985; Potapov 1997). In this study, the best habitat 

models pooled across all species, featured eleven variables with gradient being 

the only one excluded. Among these models, percentage of vegetation cover at 

different strata appeared in six and latitude and elevation in five. Among all 

models selected, percentage of vegetation cover at different strata (0 to 1 m, 1 

to 5 m and 5 to 15 m) and elevation appeared in those obtained for seven 

species, and seemed to be the most important habitat variables to influence 

species presence in extreme northwest Peru. Vegetation cover might enhance 

or restrict raptor species presence by influencing prey detectability, the 

availability of perching and nesting sites, and may influence the general 

features of hunting areas (Bechard 1982; Preston 1990; Williams et al. 2000). In 

extreme northwest Peru, elevation and latitude are related to the presence of 

different habitat types with taller and vertically more complex forest occurring at 

higher elevations (Aguirre et al. 2006). The inclusion of these two habitat 

variables in species´ best models might also be an indication of the importance 

of vegetation structure in influencing the presence of raptor species in the study 

site.  

Lowland dry forests were more abundant in the northwestern side of the study 

site where Algarrobo trees dominated, and structurally more complex and taller 

deciduous and semi-deciduous forests, with presence of Guasimo, Polopolo 

and Ceibo trees were typical of the hills located in the south and central portions 
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of the study site above 100 m (Aguire et al. 2006). Models obtained for King 

Vulture, Crane Hawk, Great Black Hawk, Gray-backed Hawk, Short-tailed 

Hawk, Black Hawk-Eagle and Laughing Falcon included these tree species and 

might be particularly important for their occurrence in the study area and for the 

maintenance of the raptor community assemblage. 

 

4.5.2 Spatial autocorrelation 

 

Spatial autocorrelation in species distribution is commonly caused by biological 

processes that can result in aggregation of individuals (Carroll and Johnson 

2007; Dormann et al. 2007). Among raptor species, territory occupancy, nest 

site selection and dispersal of individuals can be significantly affected by inter 

and intra-specific interactions that segregate individuals (Katzner et al. 2003, 

Kruger 2002; Hakkarainen et al. 2004) or aggregate them (Wallace and Temple 

1987) and thus influencing their spatial distribution. In this study, I did not find 

significantly high levels of spatial autocorrelation in the presence/absence of 

any of the raptor species included in the analysis suggesting that in general, 

there was no clustering in the record of individuals and, despite the size of the 

study area, it is probable that their distribution was not limited by their 

dispersion abilities. Correlograms obtained for only three species showed P 

values close to significance at distance between 10 to 13 km: Turkey and Black 

Vulture were the two most abundant species in the study site (present at 44 and 

34 plots respectively) and were the only ones usually detected in small groups 

while foraging and searching for food. Aditionally, the Black Hawk-Eagle was 

restricted to scarce semi-deciduous forests above 600 m where single 

individuals were detected in soaring flights performed with abundant 
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vocalizations; a behavior probably related to interspecific territorial segregation. 

Additionally I frequently observed aggressive interactions between several 

raptor species that harassed each other during flight and that usually ended 

with one individual leaving the area. Although the data obtained was not 

intended to measure competition between species, it is possible that inter and 

intra specific aggressive behavior between members of the raptor community of 

extreme northwest Peru affects species and individuals in the use of space, 

limiting their aggregation which is reflected in the lack of significant spatial 

autocorrelation. This is also supported by the fact that species in the study site 

did not present a high number of positives at any given plot that was evaluated.  

 

4.5.3 Conservation implications 

 

Habitat use studies on birds are becoming more important as they incorporate 

habitat information into conservation planning (Jones 2001). Habitat models 

obtained here have identified twelve habitat parameters that are related to the 

presence of eleven species of raptors inside and outside two protected areas in 

the core of the Tumbesian Centre of Endemism of extreme northwest Peru. 

These models can be used as tools to implement and strengthen conservation 

initiatives for single raptor species and the raptor community as a whole through 

the management and conservation of identified key habitat parameters in the 

study site. Protection of raptors species through the conservation of its habitats 

can be used as an indirect approach to protect other species, increasing the 

value of these models. Additionally, habitat models for raptors can also be used 

to identify biodiversity conservation corridors and networks more efficiently 

(Sergio et al. 2006). For raptors in extreme northwest Peru, design and 
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implementation of conservation initiatives should prioritize habitat parameters 

related to forest structure such as percentage of vegetation cover at different 

heights.  

Habitat models obtained here can be used to improve the conservation value of 

particular areas inside the TNR, the CANP and their buffer zones through the 

management of forest patches where human induced activities have altered 

vegetation composition and forest structure that favour the presence of raptor 

species. Additionally, these models can also be used to assist in the creation of 

other protected areas in extreme northwest Peru and in the Tumbesian Centre 

of Endemism as they point at key habitat features that are relevant for at least 

one endangered species of raptor that is endemic to this severely threatened 

ecosystem and whose population is decreasing throughout its entire range 

(BirdLife International 2010).  

Deforestation and burning of forests associated to cattle grazing is regarded as 

one of the major threats for raptors in Colombia (Thiollay 1991). This activity is 

widely conducted inside some portions of the NWBR, affecting the structure and 

composition of the forests at several strata and thus might be influencing the 

distribution of certain raptor species (Barnard 1987; Petit et al. 1999; BirdLife 

International 2010). Among the raptor species that were included in this 

research, the Black Hawk-Eagle and the Gray-backed Hawk were the ones of 

higher conservation concern. Black Hawk-Eagle is a rare species west of the 

Andes in Ecuador and north Peru (Ridgely and Greenfield 2001; Schulenberg et 

al. 2007) and in the study site was almost exclusively detected on semi-

deciduous forests and positively associated to vegetation cover between 0 to 1 

m. Additionally, models obtained for S. tyrannus consistently showed the 
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species positive association with elevation and the presence of Guasimo trees. 

The Black Vulture, the second most abundant species in the study site, was 

negatively associated with tree height and positively with percentage of 

vegetation cover from 0 to 1 m. Semi-deciduous forests with Guasimo trees 

associated to dense understory might constitute key habitat features for the 

Black Hawk-Eagle in extreme northwest Peru, while absence of tall trees 

associated to dense understory (a typical feature of cattle pastures) might 

favour the occurrence of Black Vultures. Transforming semi-deciduous forest 

patches into cattle pastures in the study site may favor the occurrence of Black 

Vultures while reducing habitat availability for Black Hawk-Eagles. Further 

conversion of semi-deciduous forests in extreme northwest Peru should be 

strictly controlled in order to maintain enough habitat for this species.  

The Gray-backed Hawk is an endangered and endemic species with a declining 

population in Ecuador (BirdLife International 2010; Vargas 1995).  In the study 

site, the most important habitat variable for this species was longitude. 

Additionally the species was negatively related to the presence of Algarrobo 

trees, indicating that deciduous forests east of the study area and adjacent to 

Ecuador are most suitable for this hawk. These forest portions are mostly 

outside any protected area and are being continually converted into cattle 

pastures and agricultural lands. Although a proposal for the creation of a 

Regional Protected Area is being implemented north of the CANP, efforts to 

protect remaining forest in the north and central parts of the TNR and adjacent 

Ecuador should be conducted to reduce further conversion and degradation of 

forest patches and to protect forested corridors that help to maintain 

connectivity between populations at both sides of the border. This might 
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enhance the conservation of Gray-backed Hawk in extreme northwest Peru and 

adjacent Ecuador.  
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Chapter 5: Densities and population sizes for raptors in a 

protected area in northwest Peru: Use of Distance Sampling 

and a review of survey methodologies 

______________________________________________________ 

5.1 Abstract 

Estimates of density and population size for raptor species are fundamental in 

assessments of population trends and ultimately in informing their conservation 

management. In most research, abundance of raptors is expressed as indices 

of relative abundance, although it is known that these can be poor correlates of 

actual species density. I calculated density and population size estimates for 15 

diurnal raptor species using distance sampling line transect counts in four 

different habitat types in extreme northwest Peru. Species´ densities were 

stratified by time of detection (morning or afternoon) and by habitat type. Flying 

birds were included in the analysis, given the intrinsic low abundance of most 

raptor species in the study area, and the fact that most flying birds were circling 

a point. The efficacy of including aerial records is discussed. For all but two 

species, density estimates were higher in the morning than in the afternoon. 

Absolute density was higher than 1 individual km-2 for three species and for 

seven species it lay between 0.34 and 0.86 individuals km-2. Most species 

showed marked preferences for particular habitats. Absolute density of the 

endemic and endangered Gray-backed Hawk (Leucopternis occidentalis) was 

estimated to be 0.51 individual km-2 (SE = 0.14). I argue that transect counts for 

raptor density estimates performed well for larger species in northwest Peru and 

the method is recommended for population studies across the Falconiformes. 
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For smaller, less conspicuous species, however, a point count method with the 

use of playbacks may render better results. 

 

5.2 Introduction 

Most tropical raptors are secretive forest dependant species that naturally occur 

at low densities and thus are difficult to survey. It is also difficult to get large 

number of records necessary for analysis (Fuller and Mosher 1987; Thiollay 

1989b). Despite their importance, data on population sizes and density for many 

tropical raptor species are scarce and is particularly missing for species living in 

areas of conservation priority (Thiollay 1994; Bildstein et al. 1998; Myers et al. 

2000). In the neotropics, this is highly relevant because 45% of all raptor 

species are threatened by habitat loss, fragmentation and degradation (Thiollay 

1994; Bildstein et al. 1998). 

Transects, point counts and territory mapping are among the principal 

techniques used to counts birds (Bibby et al 1992), and while several methods 

have been proposed to estimate relative abundance of raptor species, most 

research has concentrated on counting raptors along transects or roads which 

might not be randomly positioned as a way to obtain indices of raptor 

abundance (Fuller and Mosher 1987; Millsap and LeFranc 1988). These 

methods may well be biased as bird detectability is affected by observer ability, 

environmental variables and /or bird behavior, and these factors should be 

taken into account if absolute density is to be estimated (Anderson 2001; 

Rosenstock et al. 2002). 
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Distance sampling is a family of methods used for estimating the density of 

biological populations in which the observer conducts standardized surveys 

along (usually) randomly positioned lines or at points, and involves measuring 

the distance from the observer to each object detected (Thomas et al. 2002). An 

advantage of distance sampling over index counts (encounter rates) is that it 

provides direct estimates of densities that are not confounded by detectability 

(Rosenstock et al. 2002). In distance sampling not all objects will be detected by 

the observer but a fundamental assumption is that all objects that are on the 

line or point are detected [g(0)=1]. Since detection probability generally 

decreases with increasing distance, a detection function based on the number 

of objects detected at different distances is used to estimate the detection 

probability of an object at a given distance from the line (Buckland et al. 1993). 

This detection function is then used to estimate the proportion of objects missed 

during the survey and to convert count data into an estimate of absolute density 

(Rosenstock et al. 2002; Thomas et al. 2002; Bachler and Liechti 2007).  

For the reliable estimation of densities, two other assumptions should be met 

during distance sampling: i) objects should be detected at their original location 

before they move in response to the observer and ii) distances from the object 

to the line (or point) are measured accurately. Additionally, it is critical that the 

lines or points are randomly positioned regarding the distribution of the objects 

that will be surveyed (Hanowski et al. 1990; Buckland et al. 1993; Thomas et al. 

2002; Thomas et al. 2010). Distance sampling has been used to obtain absolute 

densities of bird species in temperate and tropical ecosystems through point 

counts (Marsden 1999; Lee and Marsden 2008) and transect counts (Shankar 

Raman 2003) but few attempts have been made to calculate the absolute 
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density of raptor species in temperate or tropical environments using distance 

sampling (Andersen et al. 1985; Hall et al. 1997; Boano and Toffoli 2002). 

Compared to point counts, transect counts cover more ground per unit of time 

and tend to record more birds because these are registered all along the 

transect. Transect counts are better suited for species that occur at low 

densities and might be more appropriate for surveying raptors (Bibby et al. 

1998; Buckland et al 2008). However, it is more difficult with transects to meet 

the assumption that all animals are detected at zero metres particularly in 

habitats with dense and high forest (Bibby et al. 1998). 

Given the accelerated rate of forest destruction and fragmentation in tropical 

regions (Myers et al. 2000), there is an urgent need to develop new research 

techniques that while not being resource/time consuming, provide reliable 

information on raptor density and population size. This can then be incorporated 

into IUCN Red List assessments of the status of raptor species to properly 

implement conservation efforts when necessary (Thiollay 1989; Thiollay 1994). 

The aim of this chapter is to evaluate the effectiveness of line transect distance 

sampling as an approach to calculate absolute densities of fifteen neotropical 

raptor species in forested areas of extreme northwest Peru. The aims of this 

chapter were: 1. To obtain density estimates and population size of 15 raptor 

species that occur in the study area with the use of distance sampling methods 

along transects 2. To improve density estimates of rarer species by clustering 

them with more abundant ones. 3. To obtain density and population size of 

species in different habitats by using habitat types as a covariate in 

Multicovariate Distance Sampling (MCDS).  
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5.3 Methods 

Nineteen species of raptors were detected but only fifteen were included in 

estimations of absolute abundance (those species that were registered more 

than seven times). Species included were Turkey Vulture, Black Vulture, King 

Vulture, Harris´s Hawk, Gray-backed Hawk, Great Black Hawk, Black Hawk-

Eagle, Crane Hawk, Short-tailed Hawk, Zone-tailed Hawk, Bicolored Hawk, 

Savanna Hawk, Crested Caracara, Bat Falcon and Laughing Falcon.  

 

5.3.1 Encounter rates of species 

  

Encounter rates per species, an indicator of how frequently a species was 

encountered in the study area were calculated as the sum of the number of 

individuals detected on a given transect or road divided by the length of that 

transect or road. To increase sample size, I included individuals detected 

randomly when traversing roads and trails inside the study area and then 

calculated the length of traverse with ArcView 6.2 (ESRI 1999). Figures are 

expressed as number of individuals per 100 km. 

 

5.3.2 Absolute densities of species 

 

Absolute density of raptor species registered during morning and afternoon 

transect evaluations were analyzed together and then separated by time of 

detection to produce species-specific detection functions. These analyses were 

run through Conventional Distance Sampling (CDS) in DISTANCE 6.0 (Thomas 

et al. 2010) software. Detection curves and absolute densities of raptor species 

were obtained by running the analysis with uniform, half normal and hazard rate 
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key functions with cosine, hermite polynomial and simple polynomial series 

expansion (Buckland et al. 1993; Thomas et al. 2010). Key function selection 

was done using Akaike´s Information Criterion (AIC) minimisation and chi-

square statistic was used to assess the goodness of fit of each function 

(Buckland et al. 1993). Determination of values of truncation and grouping of 

records into distance intervals followed visual inspection of detection histograms 

under different analysis conditions (Buckland et al. 1993). 

I used Multiple Covariate Distance Sampling (MCDS) in DISTANCE 6.0 

(Thomas et al 2010) to calculate absolute density of raptor species per habitat 

type (Marques et al. 2001). MCDS allows for the inclusion of covariates other 

than distance in the detection function. This is done because many variables 

(i.e. habitat, observer, flock size, etc.) can affect the detection probability and 

their inclusion as covariates in the detection function model reduces bias or 

increases precision of density estimates (Marques and Buckland 2003; 

Marques et al. 2007). The inclusion of covariates is also a useful approach to 

estimate density for a subset of data with few observations (Marques and 

Buckland 2003; Thomas et al. 2010).  Detection curves and absolute densities 

were obtained by running the analysis with half normal and hazard rate (the 

only key functions allowed in MCDS) with cosine and hermite polynomial series 

expansion. Models with lowest AIC values were selected. Truncation of outliers 

was set at 300 m because it was considered the maximum distance at which 

birds could be identified accurately to species level. 

To obtain population size estimates per species and per habitat type, I 

calculated the area in square kilometres of each habitat type with ArcGis 9.0 

(ESRI 2004). For this I obtained an Aster satellite image (Digital Elevation 
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Model) version 2 of the study area with a spatial resolution of 15 m. I then 

overlaid a shapefile of the study area with this image and fixed elevation ranges 

according to habitat types to obtain areas of habitat polygons. I used absolute 

density for each species in each habitat type and multiplied this by the area of 

each habitat polygon to calculate population sizes of 15 raptor species in each 

habitat. The total population size for each species in the study area was the 

sum of the number of individuals in each habitat type. Minimum and maximum 

population sizes per species were obtained from the sum of upper and lower 

confidence intervals of density estimates in each habitat (Jacobs and Walker 

1999; Lloyd 2008). 

  

5.3.3 Estimating density in rare species 

 

The number of records recommended for reliable density estimates with 

Distance analysis is around 100 (Buckland et al. 1993; Marsden 1999). Cluster 

analysis, a statistical technique used to generate categories fitting a set of 

observations to identify relationships between samples (Rasmussen 1992; 

McKenna 2003) was used to group different raptor species with similar 

detectability coefficients as a way to improve density estimates of very rare 

species or species difficult to detect that had low numbers of detections and 

poor detection functions. Coefficients were obtained from information provided 

by five ornithologists (Fernando Angulo, Daniel Lane, Sebastián Oré, Jose 

Rojas, Renzo Zeppilli) with extensive field experience in the study site. They 

were asked to rank fifteen species according to four features that were 

suspected to affect species detectability. These were: size (total length), soaring 

behaviour (how much of the day the species spends soaring), vocalization (how 
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common it is to hear the species calling) and visual conspicuousness (how the 

species‟ general colouration and behaviour conceals it or not amongst 

vegetation) (Rosenstock 2002). I used Ward´s method (Ward 1963) of 

hierarchical cluster analysis, a technique based on analysis of variance to 

measure the distances between clusters in the PAST software (Hammer et al. 

2001), to produce a dendrogram grouping species with similar detectability. 

Species in a given group were treated as a single „species‟ and their densities 

obtained with CDS. I then obtained multipliers from detection functions of these 

„species‟.  Absolute densities of each species within a group was obtained with 

a these multipliers in CDS in DISTANCE 6.0 (Thomas et al 2010). 

 

5.4 Results 

5.4.1 Encounter rates for species 

  

The four species with the highest encounter rates (Black Vulture, Turkey 

Vulture, Harris´s Hawk and Gray-backed Hawk) accounted for 857 (68%) of all 

1,261 individuals detected (Table 7). Individuals of the four least commonly 

encountered species (Zone-tailed Hawk, Bicolored Hawk, Crested Caracara 

and Savanna Hawk) accounted for just 63 (5%). Less encountered species 

were Bicolored Hawk and Savanna Hawk. There was a near-significant positive 

correlation between species total body length/body mass and their encounter 

rates (rs = +0.47; P = 0.08; rs = +0.50; P = 0.06 respectively), yet there was no 

significant correlation between species wing spans or tail lengths and their 

encounter rates (rs = +0.32; P = 0.23; rs = +0.21; P = 0.45 respectively). 
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Table 7. Encounter rates per species (number of individuals per 100 km) and 

standard error (SE), and number and percentage of individuals detected 

perched or flying during transect counts and random encounters. 

_______________________________________________________________ 

Species         Encounter 

                                    Rate (SE)            Perched (%)          Flying (%) 

_______________________________________________________________ 

Turkey Vulture       16.0 ± 0.01   19 (6.5)         273 (93.5) 

Black Vulture        30.7 ± 0.08   48 (14.4)             285 (85.6)  

King Vulture        3.3 ± 0.003           5 (7.3)          64 (92.7) 

Bicolored Hawk       0.6 ± 0.02            10 (83.3)           2 (16.7)  

Crane Hawk        2.1 ± 0.003          30 (85.7)           5 (14.3) 

Savanna Hawk       0.4 ± 0.01             7 (63.6)           4 (36.7) 

Great Black Hawk       2.4 ± 0.003          26 (55.3)          21 (44.7) 

Harris´s Hawk       6.6 ± 0.007   75 (62.0)             46 (38.0) 

Gray-backed Hawk       5.9 ± 0.006          32 (28.1)          82 (71.9) 

Short-tailed Hawk       1.4 ± 0.02             4 (14.3)              24 (85.7) 

Zone-tailed Hawk       1.0 ± 0.02             0 (0.0)                20 (100.0) 

Black Hawk-Eagle       2.9 ± 0.005           6 (13.6)              38 (86.4) 

Laughing Falcon       5.3 ± 0.09            82 (96.5)           3 (3.5)  

Crested Caracara       1.3 ± 0.02            18 (58.1)          13 (41.9) 

Bat Falcon        1.4 ± 0.04   17 (89.5)           2 (10.5) 

_______________________________________________________________ 
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5.4.2 Perched and flying detections 

 

All individuals of Zone-tailed Hawk were detected in flight. Species like Turkey, 

Black and King vultures, Black Hawk-Eagle and Short-tailed Hawk had very 

high percentages (> 85%) of individuals detected flying, while high percentages 

(> 80%) of individuals of Crane Hawk, Laughing Falcon, Bat Falcon and 

Bicolored Hawk were detected perched. There was a highly significant positive 

relationship between percentage of individuals detected flying and species with 

larger wing spans (rs = +0.74; P = 0.002). There was also a significant positive 

relationship between species size and body mass and percentage of individuals 

that were detected flying (rs = +0.60; P = 0.02 and rs = +0.61; P = 0.02 

respectively). However there was no correlation between encounter rates and 

percentages of individuals detected flying (rs = +0.22; P = 0.42). 

 

5.4.3 Absolute density of raptors 

 

The total number of raptor detected during transect counts was 633 (AM and 

PM pooled), and number of detections per species varied between 168 (Turkey 

Vulture) and 5 (Savanna Hawk) (Table 8). Only two species (Black and Turkey 

vulture) had more than 100 records, while three species, Harris´s Hawk, Gray-

backed Hawk and Laughing Falcon had between 40 and 68 records. Seven 

species had 10-39 records and three species had fewer than 10. Density 

(individuals km-² ± %CV) of all raptor species combined was 9.7 ± 7.5% (AM 

and PM transects pooled together). Absolute density of Turkey Vulture was the 

highest of all species in all pooled transects (4.1 ± 16.5%) and separated (3.9 ± 

18.9% in the morning and 4.1 ± 26.6% in the afternoon). In all pooled transects, 
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percentage of coefficient variation of absolute density for nine species was less 

than 30% and for two species was 31-34%. Only four species had %CV ranging 

from 37% to 56% and except for the Zone-tailed Hawk, all of these were not 

detected in the afternoon. 

The Gray-backed Hawk had an absolute density of 0.51 ± 27.8% individuals  

km-² which was similar to that of the Great-Black Hawk (0.47 ± 28.8%). The 

density estimate for Black Hawk-Eagle and Short-tailed Hawk were among the 

lowest (0.19 ± 23.5% and 0.16 ± 25.1% respectively). Number of detections for 

Bicolored Hawk, Bat Falcon and Savanna Hawk were probably too low to obtain 

reliable density estimates, and these ranged between 0.18 and 0.21 with %CV 

above 50%.  

There was a significant positive correlation between encounter rates of species 

and species´ absolute densities (rs = +0.73; P < 0.01), however there were 

variations in the relationship of species density and their encounter rates. 

Crested Caracara had similar encounter rates to Bat Falcon yet its density 

estimate was four times higher, while density of King Vulture was similar to that 

of Zone-tailed Hawk yet the vulture´s encounter rate was three times higher 

(Figure 12).  
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Figure 12: Scatterplot of the relationship between of log transformed density 

estimates per species and log transformed encounter rates. 

 

 

 

5.4.4 Number of records and precision of density estimates 

 

There was a strong negative correlation between number of detections per 

species and the values of %CV of their density estimates (rs  = -0.89; P < 0.001; 

Figure 13). Turkey and Black vultures (168 and 134 detections respectively) 

had %CV between 16 and 19%; a very similar %CV was obtained by the 

density estimate of Harris´s Hawk, although the number of detections for this 

species was 68. 
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Figure 13: Scatterplot of the relationship between number of individuals 

detected per species and percentage of coefficient variation of density 

estimates. 

 

 

 

Several species, namely King Vulture, Crane Hawk, Great Black Hawk, Short-

tailed Hawk, Black Hawk-Eagle and Crested Caracara had %CV of their density 

estimates close to 30% despite the number of individuals detected were  around 

30 or below. However, in general, it would be necessary to obtain between 40 

to 80 records per species to produce density estimates with CV of 20 to 30%. 
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5.4.5 Effect of time of day on density estimates 

Density of all raptors (species combined) was lower in the morning than in the 

afternoon (8.7 ± 8.9% individuals km-² vs. 12.0 ± 6.6%). This was also observed 

at species level except for the Great-Black Hawk and Zone-tailed Hawk. There 

was a significant difference between %CV of densities obtained at different 

times of day, with higher values for species detected in the afternoon (t = 5.64, 

n = 11, P < 0.001). I did not detect any individuals of Bicolored Hawk, Bat 

Falcon and Savanna Hawk in the afternoon and except for the Black and King 

vultures, more detections were made in the morning than in the afternoon 

(Table 8). 
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Table 8.  Number of detections (n), absolute density (D) in number of individuals km-², percentage coefficient variation (CV) and 95% 

confidence interval (C.I.) of raptor species from transects counts evaluated in the morning (AM) and in the afternoon (PM) and both 

evaluations pooled together (AM+PM). Detection functions and expansion series (DF): Half-normal (HN), Uniform (U), Hazard rate (H), 

Cosine (C), Polynomial (P), Hermite (He). 

____________________________________________________________________________________________________________________                                                                                                                                

. 

                             AM                                       PM                        AM+PM 

____________________________________________________________________________________________________________________ 

Species                              n           D       CV        95% C.I.  DF      n        D       CV       95% C.I.   DF        n        D       CV       95% C.I.     DF 

All                                    412    8.72     8.9      7.3–10.4  HNC     221    12.0    16.6      8.6–16.7  HP          633    9.74      7.5     8.4 – 11.3   UC 

Turkey Vulture                 107    3.94    18.9      2.7–5.7  HNC       61    4.10    26.6     2.4–6.9  HNC       168    4.10     16.5     3.0–5.7     HNC 

Black Vulture                    63   1.17    23.2      0.8–1.9  HNH       71    2.92    26.1    1.7–4.9  UC          134    1.72     18.1     1.2–2.5     HNC 

King Vulture                     15   0.21    32.7      0.1–0.4  UC         16    0.80    36.5     0.4–1.6  UC           31     0.36      27.4      0.2–0.6     HP 
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Bicolored Hawk                7      0.18   52.3   0.1–0.5   HNC              0    0      0       0                     7      0.13     43.9      0.1-0.3     UC 

Crane Hawk                    15      0.74   38.4   0.4-1.6    HNC             11   1.10    51.9      0.4–2.9    HNC         26      0.86     31.1    0.5–1.6     HNC 

Savanna Hawk                   5      0.19      55.2   0.1-0.6    HNHe            0    0      0      0                     5      0.13      55.4    0.04-0.4     HNC 

Great Black Hawk            24     0.54   31.0   0.3-1.0    HNHe        5    0.38    73.8     0.1–1.5 HNHe       29      0.47      28.8    0.3–0.8     HNC 

Harris´s Hawk                  52     1.28   19.1   0.9–1.9   UC       16    1.62     37.8    0.8–3.4 HNC         68      1.28      18.1     0.9–1.8     HNC 

Gray-backed Hawk          31     0.44   27.0   0.3–0.7   UC        9    0.54     51.2    0.2–1.4 HP            40      0.51      27.8    0.3–0.9     HNC 

Short-tailed Hawk            12     0.17   31.1   0.1–0.3    UC        5    0.28     44.1    0.1–0.7 UC            17      0.16      25.1    0.1–0.3     UC 

Zone-tailed Hawk            12     0.59   42.0   0.3–1.3    HNC              3    0.22     71.5     0.1–0.9 HNC         15      0.34      37.0    0.2–0.7     HP 

Black Hawk-Eagle           13     0.18   25.0   0.1-0.3     UC                 7    0.20     49.1     0.1–0.5 UC            20    0.19      23.5    0.1–0.3     UC 

Laughing Falcon              35    0.49   18.2   0.4–0.7     UC              10    0.57     47.6     0.2–1.4 UC            45      0.42      17.5    0.3–0.6     UC 

Crested Caracara             10    0.31   41.0  0.1–0.7     HP         7    1.11     61.1    0.4–3.4 HNHe       17      0.59      33.7    0.3-1.1     HNC 

Bat Falcon                        8     0.21   51.9  0.1-0.6      HNC              0     0      0     0                     8      0.08      42.4    0.03–0.2   UC 
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__________________________________________________________________________________________________________________ 

Table 9.  Raptor density estimates (D) in number of individuals km-², percentage of coefficient variation (CV) and 95% confidence interval (C.I.) 

of species using habitat types as a covariate in morning and afternoon evaluations pooled together. 

 __________________________________________________________________________________________________________________ 

                                        Dry Savanna                    Dry deciduous       Deciduous                   Semi-deciduous 

Species              D       CV     95% C.I.      D       CV      95% C.I.         D        CV     95% C.I.            D        CV     95% C.I.            

__________________________________________________________________________________________________________________ 

Turkey Vulture         6.00   19.5   4.00-9.00     2.26   15.5      1.66-3.08        2.12    30.3   1.15-3.90 1.07   29.5   0.59-1.93  

Black Vulture            3.80   35.2   1.84-7.85     1.43   18.1    1.00-2.04        1.30    26.7   0.76-2.23 1.20   35.7   0.57-2.40 

King Vulture            0    0       0      0.42   35.7    0.21-0.83        0.35    61.4   0.11-1.12 0.77   34.8   0.39-1.54 

Bicolored Hawk      N.A.         N.A.                           N.A.    N.A. 

Crane Hawk           0.74 96.7  0.14-3.87     1.09   71.6     0.29-4.03        0.54    97.4   0.10-2.80 1.19   90.5   0.25-5.66 
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Savanna Hawk       N.A.         N.A.                   N.A.    N.A. 

Great Black Hawk    0  0       0                 0.53   41.9    0.24-1.19       0.48     39.5   0.22-1.05 0.52 36.4 0.25-5.66 

Harris´s Hawk         2.23 26.7 1.29-3.88     2.12   23.4     1.33-3.36       1.28     44.5   0.53-3.07 0.55 50.4 0.21-1.47 

Gray-backed Hawk 0  0       0               0.56    40.7     0.26-1.24       1.20     28.2   0.68-2.12 0.17 55.2 0.06-0.49 

Short-tailed Hawk   0.16 70.1  0.04-0.59    0.19    52.7    0.07-0.51       0.17     57.2   0.06-0.51 0.32 39.6 0.15-0.70  

Zone-tailed Hawk   0.18 102.6  0.03-1.08    0.43    50.7     0.17-1.13        1.05     49.1   0.41-2.70 0 0       0  

Black Hawk-Eagle   0  0       0     0.04    70.8     0.01-0.15       0.19     41.9   0.08-0.44 0.55 24.6 0.34-0.90  

Laughing Falcon    0.38 57.4 0.12-1.17    0.54    28.9     0.31-0.96       0.82     28.5   0.46-1.45 0.36 53.0 0.13-1.01   

Crested Caracara   1.11 43.9 0.47-2.63    1.10    41.0     0.48-2.35        0         0        0             0 0       0 

Bat Falcon            0          0            0     0.20    58.4    0.07-0.59      0.22     78.3   0.05-0.89   0 0       0  
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5.4.5 Raptor densities in different habitats 

 

Density estimates for raptor species were calculated in four habitat types to 

identify habitat preferences per species based on habitat use. Number of 

detections were too low to estimate densities for Bicolored Hawk and Savanna 

Hawk per habitat types so were removed from analysis. All species were 

detected in dry deciduous forest and all but Crested Caracara in deciduous 

forest. Eight species were detected in dry savanna, ten in semi deciduous 

forest, and six in all four habitats. Absolute densities of Black and Turkey 

vultures were higher in dryer forests, while King Vulture had a higher density 

estimate in semi- deciduous forest and was absent from dry forest. The Harris´s 

Hawk and Crested Caracara showed a marked preference for dryer habitats, 

particularly of dry savanna. The Gray-backed Hawk, Zone-tailed Hawk, 

Laughing and Bat falcons showed preferences for dry deciduous and deciduous 

forest. Great-Black Hawk, and Black Hawk-Eagle were present in all habitats 

above 100 m. The eagle´s density increased in higher habitats while for the 

hawk it remained almost constant. There was a significant difference in the 

number of individuals per species detected in all four different habitats 

(Kruskall-Wallis Test H = 8.88, df = 3, P = 0.03; Table 9). 

 

5.4.6 Population sizes for individual species 

 

Of four habitats identified in the study area, dry forest was the smallest (41 km²) 

while deciduous forest was the largest (227.8 km²). All together, habitat types 

between 101 and 600 metres (dry deciduous and deciduous forests) accounted 

for 63% of all the study area and semi deciduous forest accounted for 30.3%. 
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Total population size of all 15 species of raptors combined was 5673 

individuals; of these almost 70% were detected in dry deciduous and deciduous 

forest while only 11% were detected in dry savanna. Density of all raptor 

species per habitat type was higher in dry savanna (14 individuals km-²) 

followed by dry deciduous (10.8 km-²) and was lower in semi-deciduous habitat 

(6.7 km-²). 

The population size of Turkey and Black vultures accounted for 40% of the 

whole raptor population in the study area. In the Accipitridae, Harris´s Hawk had 

the largest population size (841 individuals). Of these, 77% occurred in dry 

deciduous and deciduous habitats between 100 and 600 m. With an estimated 

population of just 19 individuals, Bat Falcon had the lowest population of all 

species evaluated and almost all individuals were registered in dry deciduous 

forest. Individuals of the three species of Falconidae accounted for 11% of all 

raptors detected. Within this family, Laughing Falcon was the most abundant, 

particularly in dry deciduous and deciduous forest between 100 and 600 m. 

Population size of Gray-backed Hawk in the study area was 234 individuals. Of 

these, 86% occurred in dry deciduous and deciduous habitat. The Black Hawk-

Eagle, a species that in west Peru is restricted to the northern part of the 

NWBR, had a population size of 154 individuals. Of these, 68% occurred in 

semi-deciduous forest above 600 m (Table 10). 
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Table 10. Population size (N) in number of individuals km-² and 95% confidence interval (C.I.) of raptor species from transects 

counts pooled together (AM+PM).  

________________________________________________________________________________________________________ 

                                 Dry Savanna           Dry deciduous                Deciduous     Semi-deciduous 

Species                  N         95% C.I.                    N         95% C.I.             N         95% C.I.             N          95% C.I.  

 Turkey Vulture               246      164-369                    377      277-514                   483        262-888                203       112-366 

Black Vulture                 156       75-322                    239      167-340                   296        173-508                227       108-455 

King Vulture                  0              0           70        35-138                     80          25-255                 146         74-292 

Crane Hawk                  30         6-159                   182       48-672                     123         23-638                 225        47-1072 

Great Black-Hawk            0             0           88        40-198                    109         50-239                  98          47-203  

Harris´s Hawk                  91       53-159                   354      222-560                    292       121-699                104         40-278  

Gray-backed Hawk           0             0           93        43-207                    109        50-239                   32          11-93 
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Short-tailed Hawk           7           2-24                  32        12-85                       39          14-116                61           28-133 

Zone-tailed Hawk           7           1-44                       72        28-188                    239          93-615                0                0   

Black Hawk-Eagle          0             0                    7         2-25                        43          18-100       104           64-170 

Laughing Falcon           16          9-48                   90         52-160                   187        105-330               68           25-191 

Crested Caracara         46        19–108                 183        80-392                     0               0                      0               0 

Bat Falcon                 0             0                  17          5-52                        2             1-23                   0               0 

____________________________________________________________________________________________________________ 
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5.4.7 Species detectability groupings 

 

Figure 14 is a dendrogram showing clustering of 15 raptor species according to 

their detectability attributes. The analysis divided species into two main groups: 

The first comprised five species that were almost always detected flying (Table 

7) and did not vocalize. Among these, the larger ones (Black Vulture, Turkey 

Vulture and King Vulture) were separated from the smaller ones (Zone-tailed 

Hawk and Short-tailed Hawk). The second main cluster included ten medium-

sized to large species that were mostly detected perched. Species with very 

high percentages of individuals detected perched but with different degrees of 

conspicuousness (Bicolored Hawk, Laughing Falcon and Bat Falcon) were 

separated from those species that soared more often. These were separated in 

species that hunted from perches at mid to upper canopy (Harris´s Hawk, Great 

Black Hawk and Crane Hawk) or the ground (Savanna Hawk and Crested 

Caracara) with some species that vocalized during flight (Gray-backed Hawk 

and Black Hawk-Eagle) also set apart.  

Pairs of species that were joined with cluster analysis were: Short-tailed Hawk 

with Zone-tailed Hawk, Bicolored Hawk with Bat Falcon, Gray-backed Hawk 

with Black Hawk-Eagle, Black Vulture with Turkey Vulture and King Vulture, 

Crested Caracara with Savanna Hawk and Harris´s Hawk with Great Black 

Hawk. Laughing Falcon and Crane Hawk were not included in the analysis 

because they were set apart from similar species and had enough detections 

themselves to obtain reliable density estimates. Density estimates obtained with 

the use of a multiplier for each species within a pair are presented in Table 11. 
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Figure 14: Dendrogram of raptor species grouped according to similarities in 

detectability. 
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Table 11: Absolute density (D; individuals km-²), percentage of coefficient of 

variation (CV) and 95% confidence interval (95% C.I.) of raptor species from 

morning and afternoon transects counts pooled together obtained with and without 

the use of multipliers.  

_________________________________________________________________ 

               CDS          CDS with multiplier 

Species                    D         CV      95% C.I.    D          CV      95% C.I. 

_________________________________________________________________ 

Turkey Vulture         4.10    16.5     3.0-11.3  2.55      13.0     1.98-3.30 

Black Vulture          1.72     18.1     1.2-2.5  2.04      16.5    1.47-2.81 

King Vulture          0.36     27.4     0.2-0.6           0.47      23.8    0.30-0.75 

Bicolored Hawk         0.13     43.9     0.1-0.3  0.07      46.4     0.05-0.17 

Savanna Hawk         0.13     55.4   0.04-0.4  0.14      47.1    0.06-0.34 

Great Black Hawk         0.47     28.8    0.3-0.8            0.52      25.1    0.32-0.84 

Harris´s Hawk         1.28     18.1    0.9-1.8       1.21    17.3     0.86-1.70 

Gray-backed Hawk         0.51     27.8    0.3-0.9   0.38      22.9    0.24-0.59 

Short-tailed Hawk         0.16     25.1    0.1-0.3       0.29      27.0    0.17-0.49 

Zone-tailed Hawk         0.34     37.0    0.2-0.7            0.26     32.1     0.14-0.48 

Black Hawk-Eagle         0.19     23.5   0.1-0.3             0.19     23.5    0.12-0.30 

Crested Caracara         0.59     33.7   0.3-1.1        0.48     32.8    0.06-0.34 

Bat Falcon          0.08     42.4   0.03-0.2   0.08    46.8     0.03-0.19 

_______________________________________________________________ 
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Density estimates for six species (Turkey Vulture, Bicolored Hawk, Harris´s 

Hawk, Gray-backed Hawk, Zone-tailed Hawk and Crested Caracara) were 

reduced with the use of the multiplier, while for two species (Black Hawk-Eagle 

and Bat Falcon) remained the same. The highest variation with and without the 

multiplier in density estimate corresponded to the Short-tailed Hawk (81.3%), 

while the lowest was for Harris´s Hawk (5.4%).  For eight species variation of 

density estimates was between 0 and 25%. 

For species within a pair (or trio for the vultures), percentage of CV of density 

estimates for „small hawks‟ (Bicolored Hawk and Bat Falcon) was increased, but 

for all vulture species, „scrub hawks‟ (Crested Caracara and Savanna Hawk), 

and „dark hawks‟ (Harris´s and Great Black hawks) it was reduced. Among 

„soaring hawks‟ percentage of CV of density estimates for Short-tailed Hawk 

was increased but it was reduced for the Zone-tailed Hawk. For the „vocal 

hawks‟, percentage of CV of density estimates for the Gray-backed Hawk 

diminished but for the Black Hawk-Eagle remained the same.      

 

5.5 Discussion 

 

5.5.1 Methods for estimating raptor densities 

 

Absolute densities are necessary for determining population dynamics and 

effective population sizes of organisms, and are also key in helping to 

determine the level of threat facing a species (Franklin et al. 1990; Buckland et 

al. 2008). Despite the large volume of published literature on raptor counts (see 

Andersen 2007), few have ventured into calculating absolute density of raptor 
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species. Several methods are used to estimate raptor densities and these are 

usually conducted along routes or in fixed positions. Methods used are strip  

counts, point counts, spot-mapping and capture and marking (or recapture) of 

individuals (Fuller and Mosher 1987). Additionally, nearest-neighbour nest 

distance has been used to obtain densities of several species of raptors in 

temperate and tropical ecosystems (Newton 1976). Strip counts comprise 

several approaches that are used to calculate the density and/or abundance of 

objects by means of recording the distances from the objects to a line that is 

traversed by an observer (Emlen 1971; Thomas et al. 2010). In most of these 

approaches, the area of the strips where counts are performed should be 

known and all objects within the area need to be counted in order to obtain 

accurate measurements of density (Emlen 1971). Since detections beyond the 

strip boundaries are ignored, the use of these methods for wide ranging and 

usually scarce species (like raptors) are seriously questioned (Thomas et al. 

2002). These methods are further complicated by several limitations that are 

related to observers‟ ability, weather conditions, variation in objects´ 

detectability, and conspicuousness of the objects that are counted (Emlen 1971; 

Fuller and Mosher 1987; Rosenstock et al. 2002).  

 

5.5.1.1 Distance sampling methods 

 

Distance sampling methods have been commonly used to calculate absolute 

densities of several bird taxa, but its use in raptors is still scarce (Boano and 

Toffoli 2002; Marsden and Pilgrim 2003; Shankar-Raman 2003). One key 

assumption of distance sampling is that all objects that are in the line of traverse 
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must be detected (Buckland et al. 1993; Bachler and Liechti 2007; Thomas et 

al. 2010). In a study conducted to evaluate the impact of vegetation structure on 

the detectability of various raptor models, Millsap and LeFranc (1988) found that 

the volume and distribution of foliage were the primary factors affecting 

detection of models, and that the use of counting methods that accounted for 

differences in detectability such as line transects improved accuracy of density 

estimates. However, they suggested that in most cases objects were not 

independent of the positions of transects because roads were used as 

transects. This has also been noted in Williams et al. (2000) when calculating 

densities of raptor species in different habitat types in Kansas, in Andersen et 

al. (1985) when calculating raptor population size in Colorado and in Boano and 

Toffoli (2002) when calculating densities of Common Buzzard (Buteo buteo) in 

northern Italy. In all these studies, roads were used as transects and given that 

roads are not placed randomly, raptor positions might have been influenced by 

the transect itself. Additionally telephone poles, a favored hunting perch for 

certain raptor species (Janes 1985) were present in some of these transects, 

influencing detectability of raptors and most probably, increasing density 

estimates.  

In point transects, also referred as point count transects, evaluation points are 

positioned randomly and usually along a transect to ease access. Birds within a 

radius (fixed, variable or unlimited distance) from the centre of the evaluation 

point are recorded for a previously defined period of time and double counting 

of individuals is avoided. Priority is given to birds closer to the observer and 

assumptions are similar to those of line transects (Fuller and Mosher 1987; 

Thomas et al. 2002; Marsden and Pilgrim 2003; Thomas et al. 2010). Point 
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counts are preferred when evaluating difficult terrain and dense vegetation. It is 

also easier to relate bird density to habitat characteristics in a point than along a 

transect (Thomas et al. 2002; Buckland et al. 2008). There are however some 

shortcomings associated to point counts that might be particularly relevant 

when counting raptors: The effective counting period in point counts is relatively 

short (i.e. between to 6 to 20 minutes –Marsden and Pilgrim 2003; Lloyd 2008) 

and no counting is performed when moving from one point to another. Thus, 

line transects generate more detections given the same effort and this might be 

particularly relevant for species that occur at low numbers such as birds of prey 

(Buckland et al. 2008). However, Hall et al. (1997) used point counts along 

roads to calculate the density of the endangered Hawaiian Hawk (Buteo 

solitarius) and its relation with different habitat types while Klavitter and Marzluff 

(2007) used a combination of point counts with playback recordings to calculate 

Hawaiian Hawk density.  

 

5.5.1.2 Spot-mapping 

 

Spot-mapping is a method widely used to calculate densities of small bird 

species (Christman 1984; Terborgh et al. 1990; Kratter 1997) and has been 

used to a lesser extent with raptors because of their suspected large territorial 

requirements and because of their low rates of detection (Fuller and Mosher 

1987; Terborgh et al. 1997). In spot-mapping, bird positions are plotted on a 

map and bird territories are determined from repeated visits to these same 

areas. Interaction with conspecifics by means of agonistic behavior or 

vocalizations help in defining territorial boundaries for individuals (Christman 
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1984). For a given species, the number of territories, the area of these 

territories and individuals contained within them are used to obtain the absolute 

density of the species. This method has been widely used to obtain densities of 

songbirds, yet several considerations regarding imperfect detectability (i.e. that 

detectability of individuals vary with distance from the observer and habitat 

types) have to be considered when using it (Terborgh et al. 1990; Kratter 1997). 

Thiollay (1989) used a variation of spot-mapping to obtain data on numbers of 

individuals of 15 raptor species inhabiting 42 km² of forests in French Guiana. 

From an elevated point, he mapped the itinerary of individuals flying over the 

forest canopy. He also used conventional spot-mapping to determine home 

ranges of groups of Red-throated Caracara (Ibycter americanus) in this same 

area. The loud interactions between neighbouring groups helped to determine 

the limits of their territories. All other raptor species were detected too 

infrequently from the forest floor to accurately map their territories. Spot 

mapping was also used by Klavitter and Marzluff (2007) to calculate the 

absolute density of the Hawaiian Hawk. For this, all individuals in two study 

sites were captured and banded to ease identification. During surveys, 

broadcasting of the hawk´s calls was used to attract individuals to ensure that 

almost all individuals were detected. 

 

5.5.1.3 Capture and marking 

 

Capture and marking of individuals is used to estimate density of individuals 

along with other parameters such as productivity, recruitment, mortality rates, 

and reoccupancy of habitat (Gould and Fuller 1995; Kenward et al. 2000; Briggs 
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et al. 2011). This method involves the catching marking and releasing of 

individuals from a population. Then a sample size is taken and the number of 

marked individuals within the sample computed. An estimator of the population 

size is obtained by equating the proportion of marked individuals in the whole 

population to the proportion of marked individuals in the sample (Buckland et al. 

2000). Since populations are not closed (i.e. there are births, deaths and 

immigration/emigration), researchers tend to use models, such as the Jolly-

Seber that allow additions or deletions of individuals. This model renders 

accurate population size estimates providing that some assumptions are met: 

All individuals present in the sample have equal probabilities of capture, all 

marked individuals have the same probability of surviving, marks are not lost 

and all samples are instantaneous (Gould and Fuller 1985; Buckland et al. 

2000). Capture and marking of individuals has been used to estimate the 

population size of Peregrine Falcons in Greenland (Gould and Fuller 1985) and 

population trends of Peregrines in the east coast and northern United States 

(Mueller et al. 1988; Prescott-Ward et al. 1988). However, estimation of raptors´ 

densities through mark-recapture can be subject to biases given that for some 

species survival and capture probabilities are age and sex dependant (Newton 

1979; McFadzen and Marzluff 1996; Kenward et al. 1999). Also, capture and/or 

recapture probabilities might not be equal in raptors. During the breeding period 

individuals within a pair might not have the same probabilities of capture 

particularly when females spend more time in the nest and hunting and 

territorial defense is mostly performed by the male. Additionally, marked birds 

may be more likely to be resighted resulting in underestimation of population 

size (Gould and Fuller 1985; Manly et al. 1999).  
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5.5.1.4 Nearest-neighbour distance of nests 

 

Nearest-neighbour distance of nests is used to determine the population of a 

species by counting the number of active nests within an area. Active nests are 

located either from vantage points or on foot and their location and the distance 

between nests can be easily obtained with a GPS. Inter-nest distance is used to 

estimate the number of nests that can be present in a larger area providing that 

habitat characteristics remain the same. A critical assumption is that nests in 

continuous habitat are roughly separated by a continuous distance and in a 

regular manner (Bueser et al. 2003), although it has been determined that for 

some raptor species inter-nest distances vary according to factors like soil 

fertility and vegetation composition and structure, and perhaps most importantly 

according to prey abundance and nesting site availability (Newton 1976; 

Newton 1979). The fact that some species build more than one nest in a 

breeding territory may complicate the calculation of species´ density through 

this method, so constant monitoring of suspected nesting sites should be 

carried out during research (Vargas-Gonzales and Vargas 2011). Additionally, 

there might be non-breeding individuals in addition to the breeding pairs in the 

study area so their numbers should be estimated considering the breeding 

success of the species and survival rates of the hatched individuals (Shultz 

2002). 

This method has been used to estimate population densities of species such as 

Crowned Eagle (Stephanoaetus coronatus) in Africa, Javan Hawk (Spizaetus 

bartelsi) in Indonesia, Phillipine Eagle (Pithecophaga jefferyi) in the island of 

Mindanao and to estimate the nesting density of Harpy Eagles in Panamá (van 
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Balen and Meyburg 1994; Shultz 2002; Bueser et al. 2003; Vargas-Gonzales 

and Vargas 2011). Additionally it has been used to estimate population 

densities of Peregrine Falcons in Spain (Heredia et al. 1988), and other parts of 

the world (see Cade et al. 1988). A different approach, based on the counts of 

individuals at nesting sites has also been used to calculate breeding densities of 

large falcons in North America and Greenland (Falk and Moller 1988; Olsen and 

Olsen 1988; Mossop and Hayes 1994; Shank and Poole 1994). 

Few studies have attempted to calculate absolute density and population size of 

neotropical raptor species and studies based on rigorous sampling and analysis 

to calculate density estimates for neotropical raptor species within a community 

are particularly scarce. This is probably as a consequence of the inherent rarity 

(low density) in this avian group (Boano and Toffoli 2002). Minimum number of 

records detected for reliable density estimations has been set at around 100 

(Buckland et al. 1993), although Andersen et al. (1985) used sample sizes 

equal or higher than 40 sightings to reliably define a detection function for 

raptors along line transects. Lloyd (2008) obtained density estimates for high 

Andean bird species with 20 or more records (although %CV of density 

estimates varied from 13.6 to 156.8). In this study, the number of individuals 

detected for only five species were higher or equal to 40, while for four species 

individuals detected were between 20 and 31. Despite this, %CV of density 

estimates (AM and PM transects pooled together) was below 30% for nine 

species and perhaps more importantly, I was able to obtain density estimates 

with good precision for six species with 17 to 31 detections. This is particularly 

relevant for researchers aiming to calculate demographic parameters of raptor 

species given that it is usually stated that intrinsic low numbers within the 



 

123 
 

Falconiformes prevents calculation of absolute density for most species (Fuller 

and Mosher 1987; Bibby et al. 1998; Millsap and LeFranc 1988; Williams et al. 

2000; Boano and Toffoli 2002).  

 

5.5.2 Encounter rate of raptors 

 

Indices, such as encounter rates provide little and often problematic information 

on species abundance because they rest on critical and unrealistic assumptions 

concerning the detectability of target species (Anderson 2001). Despite their 

shortcomings, abundance indices such as raptor road counts are widely used to 

estimate raptor trends, community composition and habitat associations of 

species, including those of conservation concern, in temperate and tropical 

ecosystems (Williams et al. 2000; Thiollay and Rahman 2002; Ferguson 2004; 

Jensen et al. 2005; Andersen 2007; Simmons and Legra 2009). Road counts 

are favoured because they are relatively easy to implement (cars and roads are 

available almost everywhere), relatively inexpensive, and because vast areas of 

suspected raptorial habitat can be covered in a short time, counts from cars are 

suspected to yield more detections than counts performed by foot (Fuller and 

Mosher 1987; Millsap and LeFranc 1988). However, in most cases roads 

traverse across particular landscape features, avoiding steep or rugged terrain, 

flooded areas, etc. so is not possible to ensure that raptors are distributed 

randomly from the road itself. Relying on the availability of roads to perform 

raptor counts would leave vast areas within the tropics unexplored. Given the 

effect caused by roads and its impact on surrounding vegetation, habitat 

structure might be temporary or permanently affected at roadsides favoring 

detection of edge species at the expense of forest interior ones (Ellis et al. 
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1990) which in turn are the most vulnerable (Thiollay 1989b; Bierregard 1998; 

Bildstein et al. 1998) while evaluation speed is usually between 15 to 40 km h-1 

(Fuller and Mosher 1987) seriously affecting detection of small species (Milsap 

and LeFranc 1988) and thus leaving them out from analysis.  

 

The encounter rate of a given species might be influenced by its size. Species 

like the Black and Turkey vultures were among the larger, heavier, long winged 

species in the study area and had the highest encounter rates not only in 

account of their abundance but probably because of their higher detection 

probabilities derived from their larger size and behaviour. Large bodied and 

heavier species might be detected more easily particularly in open habitat as 

individuals are less able to remain concealed by vegetation (Millsap and 

LeFranc 1988). Additionally, vultures tend to perch on high exposed branches 

during the early morning hours, and soar during warmer periods thus favouring 

detection (Fuller and Mosher 1987). Highly vocal species like Harris´s Hawk, 

Laughing Falcon and Gray-backed Hawk had higher encounter rates than 

similarly sized but less vocal species such as the Crane, Short-tailed and Great-

Black hawks. In contrast, small species such as the Bicolored Hawk and the Bat 

Falcon might have lower detection rates.  

 

5.5.3 Raptor densities 

 

This research is the first to use distance transect sampling to census diurnal 

raptors in Peru. The use of distance sampling methodologies to calculate raptor 

densities has been questioned because of suspected long periods of fieldwork 

in order to collect enough detections to perform analyses (Thiollay 1989b). In 
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this research however all detections were collected in 70 field days with a 

sampling effort of approximately five hours per day. The remaining time was 

mostly spent mapping trails inside the study area. Surveys were not conducted 

in the rainy season, and because raptors in the study area are suspected to 

breed with the onset of rains (Vargas 1995) density estimates were not affected 

by variation in species detectability derived from individuals attending nests. I 

acknowledge, however, that this might have changed over the study period as 

the months got drier and the trees lost their leaves.  

In this research, I attempted to ensure that detection of all objects in the survey 

line was certain and that objects did not move away from the line with observer 

presence by evaluating transects at a relatively low speed (approximately 1 km 

h-1), by making pauses to scan the vegetation close to the line and by focusing 

in detecting raptors on the transect (or close to it) or flying above the transect. 

Less attention was paid to flying or soaring individuals far away from the line 

because most certainly these records were to be removed from the analysis 

when visually inspecting detection functions and truncating outliers. Detection of 

individuals before evasive movement was maximized by wearing clothes with 

colours that helped reducing observers detectability and thus reducing the 

chances of raptors moving away from the transect prior to detection (Gutzwiller 

and Marcum 1997). 

Percentages of flying birds for some species were very high (up to 100%), yet 

these individuals were included in calculation of absolute densities to increase 

sample size. Some species, namely Gray-backed Hawk and Black Hawk-Eagle 

performed aerial displays by means of flying in circles above transects; also all 

three vulture species and Short-tailed and Zone-tailed hawks frequently soared 
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in circles above the forest canopy. I calculated the centre of these circles during 

displays or soaring flights and then measured the distance from this point to the 

transect with a laser range finder. Although this might represent a violation of 

the distance assumption that that objects should be detected before natural or 

evasive movement from observer and thus might have inflated density 

estimates (Marsden 1999), most individuals were not flying away or towards the 

observer, allowing for accurate measurement of perpendicular distance from the 

centre of the bird position to the transect. Also, this approach is in line with the 

idea that distance sampling is a „snapshot‟ method in which birds are „frozen‟ in 

their initial positions. During surveys, flying birds moved independently of the 

observer‟s presence and thus bias was considerably reduced (Buckland et al. 

2008). For some species (Short-tailed Hawk, Zone-tailed Hawk and King 

Vulture) encounter of perched birds is very rare, while others (Black Hawk-

Eagle) are simply rare in the study area (Schulenberg et al. 2007) so I had to 

include individuals that were flying in circles and minimize the problem of 

movement to calculate their absolute density.  

The inclusion of moving birds in absolute density estimates through Distance 

Sampling is not new. Censuses of flying birds through Distance Sampling along 

transects are widely conducted, particularly to estimate absolute density and 

population size of marine birds (Tasker et al. 1984), with some birds detected 

when performing avoidance movements (i.e. flying away from moving vessels 

where counts are performed) (Barbraud and Thiebot 2009; Buckland et al. 

2012; Tasker et al. 1984).  

I argue that absolute density estimates obtained by including flying birds 

detected while circling over the forest during transect evaluations is not a 
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serious violation of distance assumptions. This is because birds that were 

recorded during soaring flights along transects were almost stationary when 

they were flying in circles around a fixed point when detected and birds were 

also moving independently from the observer. This method is in accordance 

with the “snap-shot” approach to Distance sampling, as I “froze” the birds in 

their initial positions (Bibby et al. 1998; Buckland et al. 2008; Tasker et al. 

1984), which was taken to be the centre of the circle made by the soaring bird.  

Bird movements tend to be more problematic in point counts than in transect 

counts, because in the former the observer remain motionless during the 

counting period and birds that were not present in the plot enter it; it is also 

possible that birds that have been counted can leave and re enter the plot 

resulting in double counting of individuals (Buckland et al. 2008).  

Although inclusion of flying birds might generate upward bias in density 

estimations (Buckland et al. 2008), I argue that double counting of raptor 

species in the study area was more problematic. However, the methodology I 

used for counting birds along transects minimized double counting given that 

transects were separated by at least 1 km from each other and none of them 

were evaluated simultaneously, thus eliminating the probability of recording the 

same flying bird from different transects. Double counting was also minimized 

by taking into account individual characteristics of soaring birds (e. g. plumage 

morph, age of birds, missing wing or tail feathers, etc.). Birds that were 

suspected to be previously detected were excluded from counts.  

For species that were almost exclusively detected in flight (e. g. King  Vulture, 

Turkey Vulture, Black Vulture, Zone-tailed Hawk, Short-tailed Hawk and Black 
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Hawk-Eagle), detection models with lower AIC values were obtained with Half 

Normal and Uniform key functions, and Cosine series expansions. The only 

exception was the Black Vulture. The Uniform key function performs well in a 

variety of situations while the Half Normal is selected when detection declines 

quickly with distance a feature that is expected in forested ecosystems like 

those present in the study area (Bibby et al. 1998). 

During the surveys, other distance assumptions were met by randomly selecting 

all plots where survey transects were laid, and thus ensuring that all individuals 

were distributed randomly with respect to transect lines. Additionally, precise 

measures of perpendicular distance from objects to the transects was obtained 

with a range finder as suggested by Millsap and LeFranc (1988) and 

Rosenstock et al. (2002). 

Absolute density of raptor species in the study area was significantly correlated 

with species encounter rates. However to obtain species encounter rate I 

included random encounters while traversing roads and trails in different 

habitats and at different times of day and did not account for differences in 

species detectability (Buckland et al. 2008). Some species (Savanna Hawk, 

Zone-tailed Hawk, Crested Caracara and Crane Hawk) showed low encounter 

rates compared to their densities, while for others (Bat Falcon, Black Hawk-

Eagle and Short-tailed Hawk) the opposite was the case. Use of encounter 

rates for these species as a surrogate of their absolute density would have 

introduced serious biases in the estimation of their abundance and population 

sizes which in turn might have led to wrong inferences on their conservation 

status in extreme northwest Peru. 
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Absolute density of eagle species in Kenya was estimated in 2.38 individuals 

km-² (Brown 1966), while in French Guiana´s rain forest absolute density of a 

diurnal raptor community was 4.44 individuals km-² (Thiollay 1989b). Absolute 

density of all raptors in northwest Peru was extremely high (9.74 individuals km-

²) because of the high numbers of Black and Turkey vultures detected. When 

these two species were removed from analysis, the density estimate for raptor 

species was almost halved (5.46 individuals km-², %CV = 8.32%, 95% C.I. = 

4.6-6.4). Absolute densities for Great-Black Hawk, King Vulture and Bicolored 

Hawk in northwest Peru were three to four times higher than those obtained for 

these species in French Guiana and for the Black Hawk-Eagle it was nine times 

higher (Thiollay 1989b), however density estimates obtained by Thiollay did not 

account for differences in detectability and thus might be biased. Density of the 

endemic Gray-backed Hawk was estimated to be 0.51 individuals km-², which is 

very much within the range of the density calculated for the species (0.5-0.6 

individuals km-²) by BirdLife International (2012).  Although small study areas 

such as the one in this study tend to inflate density estimates because the 

increased probability of organisms moving across the area boundaries (Franklin 

et al. 1990), part of these differences can also be attributed to reduced 

detectability of rainforest raptors derived from variations in vegetation density, 

which may have affected detection of secretive and less conspicuous species, 

particularly of those favouring forest interiors.  

Densities of Turkey and Black vultures were higher in drier habitats, which, in 

turn, were the most altered. It was here where all human settlements in and 

around the study area were located. These two species, but particularly Black 

Vulture, were frequently seen in high numbers around households, feeding on 
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refuse and carrion as has been observed elsewhere in their range (Lemon 

1991; Rodriguez-Estrella and Brown 1990). Crested Caracara was also 

abundant at lower elevation habitat. This species was often encountered 

perched above or walking along river margins feeding on dead fish and frogs. 

Raptors are known to feed in areas where prey items are more easily accessed 

regardless of prey abundance (Preston 1990). Given the relative flat gradient at 

lower elevations in the study site, it is possible that Crested Caracara´s 

abundance was influenced by the increased number of beaches, estuaries and 

ponds at lower elevations, which, in turn, increased the species´ chances of 

finding food. Abundance of Black Hawk-Eagle increased at higher elevations 

where taller trees dominated the landscape. A long tail and short and rounded 

wings like those of the Black Hawk-Eagle enable raptors to maneuver in dense 

forest while heavier raptors with longer wings are more frequent in birds from 

open habitats (Mader 1978; Janes 1985). It is possible that in extreme 

northwest Peru, segregation of raptor species within the community is also 

related to the morphology of species and their ability to exploit particular 

features in the landscape as has been documented elsewhere (Janes 1985; 

Gammauf et al. 1998). 

 

5.5.4 Improving density estimates of rare species  

 

For nine species with detections ranging from 168 (Turkey Vulture) and 15 

(Zone-tailed Hawk), %CV of absolute density estimates for species grouped 

with cluster analysis and calculated with the use of multipliers was lower than 

those obtained without grouping. For the Bicolored Hawk, the Bat Falcon and 
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the Short-tailed Hawk, %CV of absolute density estimates increased while for 

the Black Hawk-Eagle (20 detections) remained the same. It is possible that the 

number of detections for the Bicolored Hawk and the Bat Falcon (7 and 8 

respectively) were too small to improve absolute density estimates, however for 

species with number of detections ranging from 20 to 40, the use of multipliers 

can improve their density estimates. 

Results suggest that line transect distance sampling is a potentially useful 

method for assessing abundance for most raptor species that inhabit forested 

habitats in extreme northwest Peru. My analysis also shows that absolute 

density estimates for species can also be improved with the use of multipliers. 

In this study, exceptions were the Savanna Hawk, Bicolored Hawk and Bat 

Falcon. The Savanna Hawk is relatively common in shrubby habitat and 

agricultural fields outside the study area (Schulenberg et al. 2007), and given its 

abundance and conspicuousness elsewhere, might be very well suited for 

transects counts in preferred habitat. The Bicolored Hawk, a small and secretive 

species very difficult to detect (Thiollay 1989), and the Bat Falcon, another 

small species that is more active early in the morning or late in the afternoon 

might be more common in the study area than this research suggest. For the 

falcon, surveying at periods when the species is hunting might increase the 

detection of individuals, while for the hawk, broadcasting of conspecific 

vocalizations in points along transects to elicit individual responses (Fuller and 

Mosher 1996; Buckland et al. 2008) might be a better method to calculate 

absolute densities than transect evaluations. The lack of records of Collared 

Forest-Falcon and Barred Forest-Falcon during transects counts may well be a 

consequence of the time of day at which evaluations were performed. In order 
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to obtain absolute densities of these species, aural detections along transects 

like those conducted by Lloyd (2003) should be performed at dawn and dusk. 

 

5.5.5 Conservation implications  

The NWBR holds a highly diverse and particularly rich community of diurnal 

raptors that is unique in Peru (Piana 2011). Six species had absolute densities 

ranging from 0.59 to 4.14 individuals km-² and for nine species it ranged from 

0.08 to 0.51 individuals km-². According to Terborgh et al. (1990), large species 

with absolute densities of less than 0.5 individuals km-² are particularly sensible 

to habitat degradation and might require large areas of intact habitat to maintain 

stable populations. For species like King Vulture, Black Hawk-Eagle, Great-

Black Hawk, Short-tailed Hawk, Zone-tailed Hawk, Laughing Falcon, and Gray-

backed Hawk, maintaining the integrity and continuity of forested areas in the 

CANP, the TNR and buffer zones might be vital for their survival in extreme 

northwest Peru. Further destruction of forests must be avoided while 

management of habitat mosaics outside the NWBR should also be enhanced to 

preserve as much forest cover as possible. The recently created Tutumo-

Matapalo Regional Conservation Area, north of the CANP is a good step in this 

direction and should be replicated in adjacent Ecuador. 

Habitat diversity is crucial to maintain species diversity within the diurnal raptor 

community in extreme northwest Peru given that most species showed a 

marked preference for particular habitats (i.e. only six species of the 15 included 

in this study were registered in all four habitat types). The endemic Gray-backed 

Hawk, the only endemic species in the study area (BirdLife International 2012) 
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was mainly detected in deciduous habitats at 100-600 m, and 64% of all 

sightings were between 200 and 500 m. In western Peru, the Black Hawk-Eagle 

is restricted to semi deciduous habitat in Tumbes and is also very scarce in 

western Ecuador (Ridgely and Greenfield 2001). My findings highlight the 

importance of these particular habitats for the species persistence in 

northwestern Peru, and west of the Andes in Peru and Ecuador.  

Minimum viable population (MVP) has been defined as the number of 

individuals needed for a species to have a high probability of persistence in a 

given period of time (Shaffer 1981; Brook et al. 2006). For some species or 

taxonomic groups, MVP has been tentatively established between the higher 

hundreds and the lower thousands although most of these numbers are based 

more on theory than on observations of population dynamics (Thomas 1990; 

Brook et al. 2006). Walter (1990) showed that for the endemic Socorro 

subspecies of the Red-tailed Hawk (Buteo jamaicensis socorroensis) a 

population of approximately 50 individuals has been sufficient for the species to 

persist for at least 120 years in an island of 140 square kilometres (absolute 

density = 0.36 individuals km-²). In the study area, population size of three 

species (Bat Falcon, Bicolored Hawk and Savanna Hawk) was lower than 19 

individuals and are possibly too low to persist in the long term. However it may 

be that populations of Bicolored Hawk and Bat Falcon were underestimated due 

to the methods used to estimate them.  

Apart from the Bat Falcon, population size of other five species, namely King 

Vulture, Great Black Hawk, Short-tailed Hawk, Black Hawk-Eagle and Crested 

Caracara were below 300 individuals and might be of higher conservation 

concern in the study area. Small populations in small habitat fragments have 
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high conservation potential providing that populations are not isolated (Thomas 

1990). Maintenance of connectivity along the whole Tumbesian Centre of 

Endemism might provide higher probabilities of persistence during extended 

periods of time for these five species. Conservation of remaining patches along 

northwest Peru and western Ecuador might contribute in the creation of 

landscape corridors (Soulé and Simberloff 1986; Jones et al. 2012) that could 

help in maintaining connectivity between subpopulations of these species, and 

thus increasing their chances of survival in the Tumbesian Centre of Endemism.  

Based on the density obtained from the entire study area, population size of the 

endemic and endangered Gray-backed Hawk was estimated at 319 (95% C.I. 

187–563) individuals. However, since the species was absent from dry 

savanna, its real population size was estimated at 234 (95% C.I. 104–539). This 

is the first population size estimate obtained for the species in Peru. In Ecuador 

the current population size for this species has been calculated at 100–250 

birds and the population is suspected to be declining due to ongoing habitat 

destruction and fragmentation (BirdLife International 2012). My results put into 

perspective the importance of the Peruvian population of Gray-backed Hawk 

and its habitat for the long term persistence of the species across its entire 

range. They also call for the urgent protection of remaining forested habitats 

within the NWBR in order to maintain its highly diverse raptor community.  
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Chapter 6: Influence of cattle grazing intensity on raptor 

distribution within a Peruvian protected area 

______________________________________________________ 

6.1 Abstract 

Despite its impact on forest structure and biological diversity, cattle grazing is 

frequent in protected areas across the tropics. I used generalized additive 

models (GAMs) to examine the relationship between vegetation structure, 

elevation and cattle „density‟ and raptor species richness metrics and the 

occurrence of six diurnal raptor species in 39 km² plots within the North West 

Biosphere Reserve, northwest Peru. Cattle grazing was widespread. Cattle 

density, estimated from transect counts of cow dung and corrected for 

accumulation rates was negatively correlated with average canopy height and 

percentage of vegetation cover from 5 to 15 m. Percentage of vegetation cover 

5-15 m above the ground was the most important feature influencing richness of 

rare species and the distribution of four from six raptor species. Raptors 

responded differently to cattle density. Likelihood of presence of species that 

hunted or searched for food in open habitats increased with cattle density, while 

presence of range restricted or declining species decreased. The establishment 

of cattle pastures at the expense of standing forests may have detrimental 

impacts on the populations of range restricted species. Moderate cattle 

densities of approximately 60 individuals km-² can be beneficial for some raptor 

species and might help to maintain the high raptor diversity in the study area, 

however, this activity should be monitored by NWBR authorities so no more 

forest is converted into cattle pastures.  
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6.2 Introduction 

Creation of protected areas continues to be the main strategy to protect 

biological diversity (Ervin 2003; Hayes and Ostrom 2005; Naughton-Treves et 

al. 2006). However, in many tropical countries these are often weakly enforced 

by national and local authorities and activities that are detrimental for the 

maintenance of biological diversity are widespread inside parks and reserves 

(Peres and Terborgh 1995; Ervin 2003).  

Free-range cattle grazing, an activity that allows unrestricted movement of cattle 

is widely conducted in tropical regions of the world (van Rees and Hutson 1983; 

de Haan et al. 1997), including protected areas (Naughton-Treves et al. 2006). 

Often, cattle are left to roam free in natural landscapes where they feed on the 

native vegetation (Stern et al. 2002). Additionally, natural areas are cleared to 

favour growth of native or introduced pastures that are beneficial for cattle. In 

the neotropics, cutting and burning of vegetation is a common practice to 

convert natural forest stands into homogeneous cattle pastures where few 

species predominate (Nepstad et al. 1999; Nepstad et al. 2001). This practice is 

known to affect species diversity given that grazed areas support a simplified 

array of wildlife and flora species and because structurally less complex 

vegetation provides habitat to fewer species (Roth 1976; Rotemberry and 

Wiens 1980; Stern et al. 2002; Krueper et al. 2003). Removal of vegetation by 

cattle causes changes in forest structure and composition that negatively affect 

diversity and community structure of plant and wildlife species, including those 

that are preferred prey of raptors (Stern et al. 2002; Torre et al. 2007; Johnson 

and Horn 2008). Soil compaction caused by cattle reduces the availability of 
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shelter for some species including rodents (Torre et al. 2007). However grazing 

opens up understory and this might benefit some raptors by increasing prey 

detectability and capture (e.g. Bechard 1982; Preston 1990). 

Despite being reasonably well studied in temperate systems, little is known of 

the effects of cattle grazing on tropical raptors either across the wider 

landscape, or within tropical protected areas in particular. Knowledge of how 

communities and conservation-important species respond to grazing is 

important both to guide „gross‟ protected area management policies (whether 

grazing should be permitted or not) and, ideally, inform on how raptors respond 

to different cattle densities/grazing pressures.  

To this purpose, I use GAMs to identify the habitat features that best predict 

raptor species richness measures and the presence of individual species within 

the North West Biosphere Reserve. I was especially interested in how 

important cattle density was for raptors as compared to other habitat features. I 

then examined the shape of the response curves to estimated cattle density to 

identify any threshold levels at which species reactions are disproportionately 

positive or negative. The aims of this chapter were: 1. To use dung counts to 

obtain cattle densities in the study area and to relate it to the diversity, 

abundance and distribution of raptor species with the use of GAM. 2. To 

measure the impact of different levels of cattle density in the structure of the 

raptor community and in the distribution of single species in the study area. 3. 

To obtain thresholds levels of cattle density that can be used as gross 

management tools to maintain the highly diverse community of raptors that is 

characteristic of northwest Peru. 
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6.3 Methods 

6.3.1 Raptor surveys  

Thirty nine randomly chosen km2 plots (1 km x 1 km) within a 25 x 25 km 

study area (6.2% of the total area selected) were surveyed during 2009. A 

small number of plots were too remote to allow safe access so plots up to 2 

km closer to existing trails were substituted for these (Thiollay 1993). No two 

plots were chosen if they fell in adjacent squares. All diurnal raptors seen or 

heard perched or flying along each transect were recorded and their distance 

to the transect line was measured with a range finder. See Raptor surveys and 

habitat recordings for more details in the methodology used. 

6.3.2 Habitat data collection 

Habitat measurements were taken at eight points located 200 m apart along 

each transect. To avoid possible biases derived from sampling along edges, 

evaluations were conducted 15 m perpendicular to the trail inside the forest. 

Elevation, latitude and longitude were recorded with a GPS, gradient was 

measured with a clinometer, canopy height was visually estimated, and 

percentage cover at different three vegetation strata (1-5 m, 5-15 m, and 15-25 

m above ground) were estimated and then averaged within each transect. 

Total number of stems from 0.1 to 2 cm diameter (1 metre above ground) were 

counted on four 2 x 2 m square plot located inside each of the strips where 

cattle dungs were counted (Figure 15). The centre of the plot was laid at the 

midpoint of the strip, 7.5 m away from the point where the above habitat 

variables were recorded. Number of stems was averaged across the 4 m² plots. 
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6.3.3 Cattle density estimation 

Dung counts have been widely used as an indirect method to obtain abundance 

estimates of terrestrial vertebrates (e.g. Plumptre 2000; Palmer and Truscott 

2003). The method gives accurate density estimates providing that defecation 

rates and dung decay are incorporated in calculations of final abundance 

numbers and standard sampling methods are used to lay sampling units in the 

field (Bailey and Putman 1981; Barnes 2001; Marques et al. 2001). 

All cattle dungs were counted in four strip transects fifteen metres long and two 

metres wide (Figure 15; total area = 120 m²), and this figure expressed as 

number of dungs km-². Given the abundance of rains during the wet season in 

the study area, number of cow dungs in the field were assumed to fall to zero at 

the end of the rains (taken to be 31 March in the year of study). While there is 

clearly no immediate „switching off‟ of the rains at the onset of the dry season, it 

was assumed that cattle dungs were accumulated in areas at a given rate per 

day, with no destruction of cattle dungs during the dry season. This lack of 

heavy rain during the dry season meant that cow dungs simply dessicated 

where they were dropped. To estimate cattle „density‟ within plots, number of 

total cattle dungs was corrected by incorporating the number of days between 

the end of the rains and the date on which each plot was surveyed. There was a 

near positive significant correlation between density of cattle dungs and number 

of days after the rainy season ended (rs  = +0.30; P = 0.06; Figure 16). 
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Figure 15. Stem and cow dung evaluation plot layout in relation to main habitat 

and raptor survey transect. 

 

 

 

Figure 16: Scatterplot of mean number of cattle dungs counted per plot and 

number of days after the end of rain season. 
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From a literature search of dung production rates (Table 12), daily production of 

cattle dungs per cattle individuals was estimated to be 13. Cattle density in a 

plot was calculated by dividing the total number of cattle dungs per square 

kilometre in that plot by the number of days between the end of the rains and 

the date of evaluation multiplied by dung production rate.  

 

Table 12: Mean cattle dung production rate ± standard error (SE) or standard 

deviation (SD) and sample size (n) in different habitats/regions from published 

sources (Reference). 

_______________________________________________________________ 

Country/habitat  Mean  SE SD n Reference 

_______________________________________________________________ 

New Zealand/north 10.5  0.31 1.32  18 Weeda (1967) 

Kenya/Arid savanna 13.0  0.44 - 7 Augustine (2003) 

Belgium/coast  14.4  - - -  Cosyn et al. (2005) 

New Zealand/south 13  - - -  McDowell (2006) 

Japan/south  13.6  0.48 3.32 23  Hirata et al. (2009) 

Switzerland/alpine 12.5  2.5 3.53  - Gillet et al. (2010) 

_______________________________________________________________ 

 

6.3.4 Raptor response variables 

The most common species were found in almost all plots (Turkey Vulture and 

Black Vulture were found in 30 and 26 plots respectively), while the less 
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common (Bicolored Hawk, Crane Hawk, Zone-tailed Hawk, Crested Caracara 

and Bat Falcon) were detected in three to six plots. GAMs do not perform well 

with small sample sizes (Wisz et al. 2008) so I restricted habitat association 

analyses to more common species with 9 or more records. These were King 

Vulture (recorded in 14 km2 plots), Gray-backed Hawk (12 plots), Great Black 

Hawk (12 plots), Black Hawk-Eagle (17 plots), Harris´s Hawk (20 plots), and 

Short-tailed Hawk (9 plots). 

Along with the presence/absence of individual species, I included the following 

three composite measures of raptor diversity/abundance. Species richness was 

the number of species of any raptor (not just the six included above) recorded 

within the plot. I calculated the Shannon-Wiener diversity index for each plot, 

and an index of rarity for each plot as follows. For each species recorded within 

the plot I multiplied the number of records within the plot by the inverse of the 

population density at which it was estimated to occur within the study area. 

Density estimates were derived using line transect distance sampling in 70  km² 

plots randomly selected from across the study area. Density estimates (see 

Table 8) were calculated from species-specific detection functions in the 

Conventional Distance Sampling (CDS) engine of DISTANCE 6.0 (Thomas et 

al. 2009). See absolute densities in Chapter 5. 

 

6.3.5 Autocorrelation and variable selection 

The predictor variables were tested for autocorrelation through Spearman´s 

rank correlation tests in PAST software (Hammer et al. 2001). Pairs of variables 

with alpha values less than 0.05 were considered significantly correlated so one 
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variable (the one thought to be less influential for raptor distribution) was 

removed from analysis (Lor and Malecki 2006). Number of stems, elevation, 

latitude and longitude were significantly correlated with percentage of 

vegetation cover from 15 to 25 m above ground (P < 0.05). Gradient was 

significantly correlated with elevation (rs = +0.41; P < 0.01). The index of cattle 

density was negatively correlated (albeit weakly) with a number of vegetation 

measures: with number of stems (rs = -0.3; P < 0.05), average canopy height (rs 

= -0.40; P < 0.01), and percentage of vegetation cover 1-5 m above ground (rs = 

-0.22; P = 0.18). Based on these analyses, the following variables were 

selected as predictors for the GAMs: elevation (elev), average canopy height 

(can); percentage of vegetation cover 5-15 metres above ground (cov5); 

number of stems (stems); and number of cows per km² (cows). 

 

6.3.6 Raptor-habitat association models 

Generalized Additive Models are extensions of Generalized Linear Models 

(GLMs) that replace the linear regression coefficients with semi-parametric 

smoothing functions and additively calculate the component response (Hastie 

and Tibirishani 1986; Guisan et al. 2002; Heinanen et al. 2008). GAMs allows 

for the probability distribution of the response variable and the link between 

predictors and the probability distribution to be more general and are better 

suited to deal with highly non-linear and complex relationships between the 

response and predictive variables predictors (Granadeiro et al. 2004; Vilchis et 

al. 2006). 
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I ran logistic GAMs for the presence/absence of six raptor species and Poisson 

GAMs for the diversity/rarity indices using the „mgcv‟ package in R (R 

Development Core Team 2012) version 2.15.0. Model selection was based on 

minimising Akaike´s Information Criterion (AIC) (Burnham and Anderson 2002). 

AIC „measures‟ how good a particular model explains deviance in the data but 

penalizes models with a large number of parameters (Johnson and Omland 

2004). All models within less than four AIC points compared with the model with 

the lowest AIC value were considered as competing models and selected for 

analysis (Pedrana et al. 2008). Akaike Weights (Wi) were used as a measure of 

the probability that a model have for being the best among the whole set of 

candidate models (Burnham and Anderson 2002; Johnson and Omland 2004). 

 

6.4 Results 

6.4.1 Cattle presence and density 

Cattle dungs were recorded in all but one of the 39 plots. Cattle densities were 

calculated to average 29.2 individuals km-² ± 28.9 (SD) in plots. There were no 

significant differences in cattle „densities‟ between habitat types (dry savanna 

forest; dry deciduous forest and semi-deciduous forest: Kruskal-Wallis Test H = 

3.07, df = 3, P = 0.38), nor were there significant differences between the three 

different protected areas regimes (Tumbes Reserve; Cerros de Amotape 

National Park; buffer zones: Kruskal-Wallis Test H = 5.03, df = 2, P = 0.08). 

Additionally, there was no significant correlation between cattle density and the 

average distance from plots to the three main cattle ranching towns in the study 
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area: Pampas de Hospital, Tutumo and Peña Blanca (rs = -0.13; P = 0.44) nor 

with gradient (rs = -0.13; P = 0.43). 

 

6.4.2 Raptor-habitat models 

Best models are shown in Table 13 and full sets of models are shown in 

Appendix 1. Percentage of vegetation cover 5-15 m (cov5) appeared in seven 

of all best models selected, while remaining variables appeared in five or less. 

Richness was most likely influenced by elevation, number of stems and 

vegetation cover 5-15 m, while presence of rarer species was influenced by 

vegetation cover 5-15 m, cattle density and number of stems. Shannon index 

values were influenced by elevation. There was a strong relationship between 

the presence of Black Hawk-Eagle and elevation and between the presence of 

Short-tailed Hawk and percentage of vegetation cover 5-15 m so these 

variables were not included when building models for these two species 

(Guisan & Thuiller 2005). Overall, percentage cover 5-15 m was likely to appear 

in best models for most if not all raptor species (Table 13 and 14) and was 

probably the most powerful habitat variable that influenced raptor distribution. 
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Table 13. Best model selected (ΔAIC = 0) for each response variable evaluated. 

_______________________________________________________________ 

Response Variable          Predictive variables 

_______________________________________________________________ 

Richness             elev stems cov5 

Shannon index            elev 

Rarity             cov5 stems cows  

Gray-backed Hawk  can cov5 

Great Black Hawk  elev  can cov5  

Black Hawk-Eagle  cov5 stems  

Harris‟s Hawk            elev can cov5 cows 

Short-tailed Hawk  elev can 

King Vulture   can cov5 stems cows 

_______________________________________________________________ 
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Table 14. Summary of Generalised Additive Models (GAM) for raptor species in extreme northwest Peru. Values given are the sum 

of Akaike weights for each variable. * Variables not included in GAM. 

________________________________________________________________________________________________________ 

   Elevation  Canopy  %5-15m  Stems   Cows    

________________________________________________________________________________________________________ 

Richness    0.64   0.40              0.26 

 

Shannon            0.32     0.32   0.30 

 

Rarity measure   0.39   0.48                  0.81          
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Great Black Hawk                                   0.46   0.49 

 

Harris‟s Hawk                            0.00           

 

Gray-backed Hawk   0.35                      0.39   0.58 

 

Black Hawk-Eagle  *           0.24                      0.39 

 

      

Short-tailed Hawk   0.30   *                     0.33                      
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King Vulture  0.00                                   

________________________________________________________________________________________________________ 
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6.4.3 Influence of cattle density 

Individual species responded differently to increasing cow densities (Figure 

17a). Gray-backed Hawk and Black Hawk-Eagle presence decreased linearly 

with increasing cattle density, while the opposite occurred for Short-tailed Hawk 

and King Vulture. Presence of Great Black Hawk also increased with increasing 

cattle density but then diminished at a density of approximately 50 cows km-2. 

Harris´s Hawk presence remained constant at increasing levels of cattle density 

but increased at densities around 80 cows km-2 (Figure 17a). Species richness 

increased almost linearly with increasing cattle density, while species richness 

and the relative abundance of each species, expressed as the value of the 

Shannon-Wiener Index decreased. The index of rarity increased as cattle 

density increased from 20 cows km-² to 60 cows km-² but beyond this density, it 

declined (Figure 17b).    
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Figure 17: Partial GAM plots for A. presence-absence models for individual raptor species, and B. raptor richness/rarity measures, 

with cattle density as the predictor variable. Cattle density (individuals km-²) is shown on the X axis. The dotted lines represent the 

95% confidence interval around the response curve. 

A. 

.  
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6.5 Discussion 

Despite available evidence of its impact on vegetation (Schulz and Leininger 

1990; van de Koppel, 1997; Stern et al. 2002), cattle grazing is widely conducted 

in protected areas within neotropical dry forests (Guerrero 2002; Naughton-

Treves et al. 2006) and the NWBR is no exception (Leal-Pinedo and Linares-

Palomino 2005). In my study area, almost every area showed evidence of cattle 

presence. Cattle grazing in forests can change the structure and composition of 

vegetation in many ways: Cattle feed on forest understory altering forest 

structure, reducing density of lower strata, and changing plant species 

composition (Schulz and Leininger 1990; Krueper et al. 2003; Kutt and 

Woinarski 2007; Torre et al. 2007). 

Whilst the focus of this study was cattle grazing, the findings point to an 

importance for raptors of vegetation structure in the upper strata which is 

presumably not directly related to the activities of cattle. For species such as 

Gray-backed, Great Black, and Harris´s hawks and Black Hawk-Eagles, 

vegetation and cover in the upper strata might influence the availability of 

perching sites, or can provide concealment to avoid predation for adult and 

young birds (Marion and Ryder 1975; Titus and Mosher 1981; Bohall and 

Collopy 1984; Preston 1990). Falconiformes also benefit from the presence of 

prey species that are more active in the forest canopy (Bednarz 1988; 

DeStefano and McCloskey 1997; Miranda et al. 2006). Additionally, nests 

described for the species included in this study are stick structures constructed 
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high above ground and concealed within the tree canopy (Mader 1978; Rangel-

Salazar and Enriquez-Rocha 1993; Vargas 1995, Seavy and Gerhardt 1998).  

In this study, raptors responded differently to cattle density. Presence of Black 

Hawk-Eagle, a forest species, declined linearly with increasing cattle density, as 

did Gray-backed Hawk, a border species that mostly prey on snakes (Vargas 

1995) in a fairly wide range of habitats (Piana and Marsden 2012). Trampling 

and reduction of forest understory by ungulates, including cattle, is a major 

cause of bird declines in grazed areas (Fuller 2001), and influences the 

abundance of terrestrial vertebrates such as amphibians, reptiles and rodents 

(e.g. Kutt and Woinarski 2007; Cano and Leynaud 2009) which rank highly in 

diet composition of most of the raptors studied here. The reactions of two other 

species were more complex. Great Black Hawk had highest probability of 

presence when cattle density was close to 60 individuals km-² while the edge-

associated Harris´s Hawk (GRIN 2012) appears to prefer areas where cattle 

density exceeded 80 individuals km-². It is interesting to note that, although it is 

an almost obligatory carrion feeder that prefers medium sized to large carcasses 

(Robinson 1984; Schlee 2005), King Vulture showed little association with 

increasing cattle density. Short-tailed hawks, a species which mainly hunts 

birds, mammals and reptiles by soaring above open woodland, woodland edges 

and savanna type habitats (Odgen 1974; GRIN 2012) were associated with 

higher cattle densities. This species may benefit from increased densities of 

reptiles in recently cleared pastures or in degraded/recently burnt woodlands 

(e.g. Letnic et al. 2004; Cano and Leynaud 2009), or equally may be able to 
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more easily detect and catch ground-dwelling birds and mammals in open 

spaces (Preston 1990).  

Richness and Shannon-Wiener index responded differently to increasing values 

of cattle density. Species richness within plots increased non-linearly with 

increasing cattle density. In the study area, areas used for cattle grazing are 

cleared for the establishment of pastures at the expense of standing forest, so 

increased number of species in areas with more cattle could be a consequence 

of the increased presence of edge species that, in the raptor community of 

extreme northwest Peru, are more abundant (Piana and Marsden 2012). 

Decreasing values of Shannon-Wiener index with increased values of cattle 

density reflects, I believe, the increasing dominance of the raptor community by 

species such as Harris‟s Hawk, and Black and Turkey Vulture in areas of higher 

grazing pressure. Similar dominance under high grazing pressure has been 

found in a number of taxa (e.g. Knopf et al. 1988; Saab and Petit 1992; Smith et 

al. 1996; Cano & Leynaud 2010). 

Of particular concern was the negative effect of grazing on two important raptor 

species. Black Hawk-Eagle is restricted to semi-deciduous forests above 600 m 

(Piana and Marsden 2012), where its presence in the Tumbesian Centre of 

Endemism is seriously threatened by forest conversion and fragmentation 

(Ridgely and Greenfield 2001). The threatened Gray-backed Hawk, despite 

being relatively tolerant of forest alteration, has a rapidly declining population 

due to continuous habitat destruction for the establishment of pasturelands for 

cattle grazing (BirdLife International 2012). While strict control of grazing 
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(ideally, its cessation) would benefit these species, the index of raptor species 

abundance, weighted according to rarity, showed a non-linear response to 

grazing pressure. Generally across the community, grazing at cattle densities of 

20-50 individuals km-2 actually benefited the raptor community suggesting that 

tolerance of cattle in some areas is appropriate. Abundance of rare raptor 

species decreased steadily at densities beyond 60 cows km-² and such cattle 

densities should be used as a threshold level by protected area managers to 

maintain „healthy‟ raptor communities in natural protected areas like the Tumbes 

National Reserve where cattle grazing is permitted. 

Dung counts have been used to estimate density of large mammals in different 

forested environments in the tropics providing that defecation rate of target 

animals is calculated and decay rate of droppings is accounted (Plumptre and 

Harris 1995; Plumptre 2000; Marques et al. 2001). During this research cattle 

density was easily calculated by counting cow dungs along defined short strips 

on every plot. This method allowed to rapidly count cattle dung while covering 

large areas during raptor censuses. In my study area rains are highly seasonal. 

Yearly average precipitation at El Caucho research station is approximately 950 

mm and 90% of this occurs between January and March (Nunez and Zegarra 

2006). For this, I assumed that no cattle dung from previous seasons remained 

in the field after the end of rains. Additionally, no rains occurred during surveys 

so dung decay rates were considered null as they desiccated as the dry season 

progressed. No dung beetles were observed during dung counts. Dung 

production rates of cattle were obtained from literature search from research 
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mostly conducted in temperate areas. Given that digestibility of tropical forage is 

generally lower than that for temperate forage (Buschbacher 1997), it is possible 

that average dung production rate by cattle in my study site was lower than that 

assumed for density calculations. If this assumption holds, then cattle density in 

plots could be higher than this study shows.  

Analysis of the impact of cattle grazing in animal communities has shown that 

these tend to be dominated by generalist species after vegetation composition 

and structure is modified by cattle. In northeast Argentina, Cano and Leynaud 

(2010) detected changes in abundance of lizard species and in the composition 

of the lizard community at cattle densities close to 30 cows km-², while in arid 

grasslands of southern Australia the rodent community in more heavily graced 

areas tended to be dominated by the introduced common mouse (Mus 

musculus; Read and Cunningham 2010). Presence of some generalist raptor 

species in my study site also increased with increased cattle density. The 

Harris‟s Hawk, a species of arid scrub and savanna that do well in disturbed 

areas (Rodriguez-Estrella et al. 1998; GRIN 2012) increased at cattle densities 

of 80 individuals km-² while Great Black Hawk, species that is more associated 

to forests (GRIN 2012) declined at densities of 60 individuals km-². Increased 

cattle grazing in the NWBR can lead to a simplification of the raptor community. 

Given that the density of cattle permitted in certain parts of the TNR is 127 cows 

km-² (SERNANP 2010), this amount should be halved to help maintain less 

generalist raptor species in the reserve. 
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Appendix 1. AIC scores for all GAMS predicting a) Shannon Index, b) species 

richness, c) presence of rare species, d) presence of Gray-backed Hawk, e) 

presence of Great Black Hawk, f) presence of Black Hawk-Eagle, g) presence of 

Short-tailed Hawk, h) presence of King Vulture.  Asterisks denote the variables 

included in models.  

 

Species richness 

_________________________________________________________________________

Elevation Density of cows %cov5-15 No. of stems Canopy AIC  ∆AIC 

+     +  +   161.73 0 

+     +  +  + 163.40 1.67 

+  +   +  +   163.51          1.78 

          + 163.55          1.82 

      +  +   163.71          1.98  

   +   +  +   164.35          2.62      

+       +  + 164.58 2.85 

+       +   165.22 3.49 

+  +   +  +  + 165.40 3.67 

   +       + 165.52 3.79 

      +  +  + 165.66 3.93 
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   +   +  +  + 165.92 4.19 

+  +     +  + 166.55 4.82 

+  +     +   167.09 5.36                            

+     +     167.29 5.56                 

     +     168.52 6.79 

+     +    + 168.54 6.81                                     

+  +   +     169.00 7.27             

+         + 169.22          7.49   

     +    + 169.89          8.16 

     +     170.06 8.33             

+  +   +    + 170.07 8.34 

+  +       + 170.16 8.43 

      +    + 170.25 8.52 

   +   +     170.44 8.71 

   +     +  + 170.57 8.84 

   +     +   170.73 9.00 

   +   +    + 172.15        10.42 

+          172.38        10.65 

+  +        174.37        12.64 
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   +        180.28        18.55  

 

a) Shannon Index 

_________________________________________________________________________ 

Elevation Density of cows %cov5-15 No. of stems Canopy AIC  ∆AIC 

+           42.68  0 

+  +         43.59  0.91 

+     +      43.61  0.93 

+       +    43.84  1.16 

     +      44.22  1.16 

+  +   +      44.29  1.61 

     +    +  44.37  1.69 

+         +  44.58  1.90 

+     +    +  44.74  2.06 

+  +     +    44.98  2.30 

+     +  +    45.03  2.35 

       +    45.40  2.72 

     +  +    45.49  2.81 
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+  +       +  45.50  2.82 

+       +  +  45.75  3.07 

     +  +  +  45.92  3.24 

+  +   +  +    45.94  3.26 

  +   +      46.07  3.39 

+  +   +    +  46.10  3.42 

+     +  +  +  46.31  3.63 

  +   +    +  46.37  3.69 

         +  46.56  3.88 

  +         46.58  3.90 

+  +     +  +  46.91  4.30 

       +  +  47.36  4.68 

  +     +    47.39  4.71 

  +   +  +    47.41  4.73 

+  +   +  +  +  47.78  5.10 

  +   +  +  +  47.92  5.24 

  +       +  48.54  5.86 

  +     +  +  49.35  6.67 
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b) Rarity 

_________________________________________________________________________ 

Elevation Density of cows %cov5-15 No. of stems Canopy AIC  ∆AIC 

_________________________________________________________________________ 

  +   +  +    259.84 0 

  +   +  +  +  260.37 0.53 

+  +   +  +    260.73 0.89 

  +   +    +  261.61 1.77 

+  +   +  +  +  262.11 2.27 

     +  +    263.04 3.20 

+     +  +    263.10 3.26 

+  +   +    +  263.20 3.36 

+     +    +  263.78 3.94 

+     +  +  +  264.22 4.38 

     +  +  +  264.45 4.61 

  +   +      264.99 5.15 

+  +   +      265.57 5.73 

+     +      266.65 6.81 
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     +      267.14 7.30 

  +         268.61 8.77 

  +     +    269.46 9.61 

+  +         270.00        10.16 

+       +  +  271.03        11.19 

+  +     +    271.13        11.29 

       +    271.51         11.67 

+  +       +  271.93         12.09 

+       +    272.58         12.74 

+  +     +  +  272.99         13.15 

       +  +  273.34         13.50 

+           273.41         13.57 

         +  274.40         14.56 

  +     +  +  274.47         14.63 

+         +  275.31         15.47 
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c) Presence of Gray-backed Hawk 

_______________________________________________________________________ 

Elevation Density of cows %cov5-15 No. of stems Canopy AIC  ∆AIC 

_______________________________________________________________________ 

     +    +  44.35  0 

  +   +    +  44.78  0.43 

  +     +  +  45.13  0.78 

+     +    +  45.27  0.90 

+  +   +    +  45.95  1.60 

  +   +  +  +  46.08  1.73 

     +  +  +  46.18  1.83 

  +   +      46.78  2.43 

+  +     +  +  46.99  2.64 

+     +  +  +  47.12  2.77 

+  +   +  +  +  47.48  3.13 

     +      47.97  3.62 

+  +   +      47.98  3.63 

  +   +  +    48.77  4.42 
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       +  +  49.49  5.14 

+       +  +  49.55  5.20 

+         +  49.79  5.44 

     +  +    49.85  5.50 

+  +   +  +    49.90  5.55 

         +  49.93  5.58 

+     +      49.94  5.59 

  +       +  50.40  6.05 

+  +       +  51.11  6.76 

  +     +    51.60  7.25 

+  +         51.67  7.32 

+     +  +    52.39  8.04 

+  +     +    52.39  8.04 

  +         52.52  8.17 

+           52.91  8.56 

+       +    53.82  9,47 

       +    53.87  9.52 
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d) Presence of Great Black Hawk 

_______________________________________________________________________ 

Elevation Density of cows %cov5-15 No. of stems Canopy AIC  ∆AIC 

_______________________________________________________________________ 

+     +    +  35.92  0 

+  +   +    +  36.00  0.08 

+  +   +  +  +  36.35  0.43 

+     +  +  +  37.57  1.65 

     +  +  +  37.75  1.83 

     +    +  38.07  2.15 

  +   +  +  +  38.45  2.51 

  +   +    +  40.01  4.09 

       +  +  48.12          12.20 

         +  48.36          12.44 

  +       +  49.81          13.89 

+     +  +    49.82          13.90 

       +    49.86          13.94 

  +     +  +  50.01          14.09 
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     +  +    50.12          14.20 

     +      50.27          14.35 

+         +  50.32          14.40 

+  +     +  +  50.79          14.87 

+     +      51.31          15.39 

+       +    51.37          15.45 

  +         51.54          15.62 

+       +  +  51.67          15.75 

+           51.70          15.78 

  +   +  +    51.75          15.83 

+  +   +  +    51.77          15.85 

  +     +    51.82          15.90 

  +   +      51.97          16.05 

+  +       +  53.10          17.18 

+  +   +      53.10          17.18 

+  +         53.17          17.25 

+  +     +    53.34          17.42 
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e) Presence of Black Hawk-Eagle  

_______________________________________________________________________ 

Elevation Density of cows %cov5-15 No. of stems Canopy AIC  ∆AIC 

_______________________________________________________________________ 

     +  +    41.88  0 

  +   +      43.23  1.35 

     +  +  +  43.86  1.98 

  +   +    +  45.20  3.32 

  +   +  +    45.23  3.35 

  +   +  +  +  46.99            5.11 

  +         50.08  8.20 

  +     +    51.15  9.27 

     +      51.57  9.69 

  +       +  52.00           10.12 

  +     +  +  52.99           11.11 

     +    +  53.03           11.15 

       +  +  53.64           11.76 

         +  55.92           14.04 
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       +    57.19           15.31 

 

f) Presence of Harris´s Hawk  

_______________________________________________________________________ 

Elevation Density of cows %cov5-15 No. of stems Canopy AIC  ∆AIC 

_______________________________________________________________________ 

+  +   +    +  38.76  0 

+  +   +      40.21  1.45 

+  +     +  +  43.16  4.40 

+  +     +    44.01  5.25 

+  +       +  44.63  5.87 

  +   +      47.31  8.55 

+     +      48.58  9.82 

+  +   +  +  +  48.94          10.18 

+     +  +    49.67          10.91 

  +   +  +    49.76          11.00 

+     +    +  50.19           11.43 

+  +   +  +    50.75           11.99 
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     +      51.37           12.61 

  +   +  +  +  51.66           12.90 

  +       +  51.97           13.21 

  +   +    +  52.13           13.37 

+           52.74           13.98 

     +  +    52.86           14.10 

+       +    53.07           14.31 

+  +         53.25           14.49  

     +    +  53.34           14.58 

+       +  +  53.83           15.07 

  +         54.15           15.39 

+         +  54.16           15.40  

     +  +  +  54.79           16.03 

  +     +    55.04           16.28 

  +     +  +  56.90           18.14 

       +    57.11           18.35  

         +  57.94           19.18 
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       +  +  59.03           20.27 

 

g) Presence of Short-tailed Hawk 

_________________________________________________________________________ 

Elevation Density of cows %cov5-15 No. of stems Canopy AIC  ∆AIC 

_________________________________________________________________________ 

       +    43.60  0 

+       +    44.93  1.33 

  +     +    45.40  1.80 

       +  +  45.54  1.94 

  +         45.61  2.01 

+           45.65  2.05 

         +  46.13  2.53 

+  +     +    46.93  3.33 

+       +  +  46.93  3.33 

+  +         47.42  3.82 

  +     +  +  47.46  3.86 

  +       +  47.59  3.99 
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+         +  47.60  4.00 

+  +     +  +  49.24  5.64 

+  +       +  49.41  5.81 

 

h) Presence of King Vulture 

_______________________________________________________________________ 

Elevation Density of cows %cov5-15 No. of stems Canopy AIC  ∆AIC 

_______________________________________________________________________ 

  +   +  +  +  44.07  0 

     +  +  +  47.90  3.83 

       +  +  48.18  4.11 

       +    48.69  4.62 

+       +    49.34  5.24 

  +     +    49.36  5.29 

  +     +  +  49.49  5.42 

+       +  +  49.74  5.67 

+     +  +  +  49.86  5.79 

       +  +  49.89  5.82 
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     +  +    49.89  5.82 

+     +  +    50.02  5.95 

+  +     +    51.24  7.17 

  +   +  +    51.25  7.18 

+       +    53.64  9.57 

+     +      53.74  9,67 

         +  53.74  9.67 

+           54.25          10.18 

  +         54.84          10.77 

+         +  55.29          11.22 

+  +         55.73          11.66 

  +       +  55.74           11.67 

     +    +  55.74           11.67 

  +   +      56.50           12.43 

+  +       +  57.14           13.07 

+  +   +      57.16           13.09 

+     +    +  57.24           13.17 
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  +   +    +  57.74           13.74 

+  +   +    +  59.02            14.95 
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Chapter 7: Conservation priorities, management 

recommendations and the future of tropical raptor research 

______________________________________________________ 

7.1 Importance of raptor conservation 

Raptor species are positioned at the top of their food web and, as such, are 

believed to play a relevant role in structuring biological communities (Terborgh 

et al. 2001; Sergio et al. 2006). It has been argued that removal of top predators 

affects other taxa, causing changes in abundance of species at lower trophic 

levels (Terborgh 1992; Silman et al. 2003). As top predators with large home 

ranges, raptors might be sensitive to habitat loss and fragmentation (Bierregard 

1998; Thiollay 1998). Additionally, small population size increases the risk of 

local extinction for species (Purvis et al. 2000; Dale 2001; O‟Grady et al. 2004).   

There is an urgent need to document species population size of most raptor 

species and habitat attributes needed to maintain them, as well to develop new 

approaches for raptor studies that can provide robust information at low costs 

and in short times (Thiollay 1994; Bildstein et al. 1998). The most serious 

conservation threat for raptor species is habitat loss (Wilcox and Murphy 1985; 

Thiollay 1994, Bierregard 1998), whereas fragmentation of habitats poses a 

serious threat for species as they become isolated, affecting their viability and 

increasing extinction risk (Schaffer 1981; Kennedy 1986). It is important to 

rapidly measure species response to habitat change, particularly in the tropics 
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where most threatened raptor species occur and where habitat destruction is the 

fastest (Bildstein et al. 1998).  

Habitat loss in Peru is an ongoing process so there is an urgent need to 

document the population size of species within the country and to devise 

effective methods to do this. Is also important to evaluate how species cope with 

changes in their habitats so effective conservation measures can be taken. With 

more than 70 species recorded, diversity of raptors in Peru is particularly high 

(GRIN 2012). This is also true for extreme northwest Peru, where 36 raptor 

species are found (Schulenberg et al. 2007; Piana, 2011). There is an urge to 

better understand the reasons that contribute to this unusually high diversity and 

maintain it.  

7.2 The key findings of the PhD were: 

In the study area, raptors were more diverse and abundant in the buffer areas 

followed by the reserve and the park, despite the last being under the highest 

level of protection. It is necessary to develop conservation schemes outside 

protected areas for the conservation of raptor species in northwest Peru. CCA 

identified certain floristic parameters that are relevant for raptor conservation in 

extreme northwest Peru, as they are key environmental features that may 

constrict the presence of species in the study area. Prevalence of larger trees 

such as Ceibo and the presence of a fuller vegetation stratum between 5 and 15 

m might be particularly important for raptor species.  
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Habitat models generated for raptor species through Generalized Linear Models 

(GLM) showed the importance of vegetation structure parameters such as 

percentage of vegetation cover at different strata in influencing the distribution of 

species. Altitude, latitude and longitude were also relevant for at least six 

species because they determined climatic gradients that influenced forests 

composition and structure. For the Gray-backed Hawk, habitat models pointed 

at the importance of forested areas at moderate elevations east of the study site 

where Algarrobo, Polopolo, and Guasimo were absent, while for the Black 

Hawk-Eagle models highlighted the importance of forested areas at extreme 

altitudes (probably above 600 m asl) with full ground cover and with a high 

prevalence of Guasimo trees. For the King Vulture, a wide-ranging species that 

is uncommon in the study area, models pointed at the importance of forested 

areas with a fuller low vegetation stratum, and where tall trees, particularly 

Ceibo were absent.  

Estimation of species densities through Distance sampling using linear transects 

provided absolute density estimations with a CV of less than 34% for eleven out 

of fifteen raptor species. Number of contacts required to estimate demographic 

parameters for these species were between 17 and 168, but for six species with 

30 or less detections, %CV was close to 30%. Results obtained included the first 

population estimates for Gray-backed Hawk in Peru. Although inclusion of flying 

birds in density estimates could be interpreted as a violation of one of the 

Distances assumptions (the one stating that objects should be detected before 

evasive movements are performed), it was the only option possible to obtain 
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density estimates (and population size) of species that are very rarely 

encountered perched (eg. King Vulture, Short-tailed Hawk and Zone-tailed 

Hawk). However, individuals of these species should only be included in 

Distance Sampling when birds are flying in circles relatively close to the 

transect. Clustering of raptor species with similar detectability and density 

estimations for species with the use of multipliers also proved to be a good 

method to improve demographic parameters of rarer species. When the rare Bat 

Falcon was excluded from analysis, values of %CV of density estimates 

obtained with the use of multipliers were significantly lower than those obtained 

with CDS (t = 2.6, df = 11, P = 0.025). 

Generalized Additive Models (GAM) for raptor species in the study area also 

showed the importance of vegetation structure (particularly vegetation cover 

from 5 to 15 m above ground) in influencing the distribution of five species and 

of those that were rare in the study area. Canopy height was important in 

explaining the distribution of three species. GAM showed different responses of 

species to cattle: While some species presence decreased with increased cattle 

density, others increased. However species that were threatened in the study 

area showed a negative response to increased cattle. GAM also identified cattle 

densities at which species reactions were disproportionally positive or negative, 

particularly for those that are of conservation concern or rare in the study area 

such as the Gray-backed Hawk, the Black Hawk-Eagle, the King Vulture and the 

Great Black Hawk. My findings also point at threshold levels of cattle densities 

that are either favourable or detrimental for these species in the study area. 
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These cattle threshold levels could be used by protected area managers for the 

maintenance of the whole raptor community and for the conservation single 

species in areas under different land uses within the NWBR.  

 

7.3 Conservation priorities in the NWBR and in the Tumbesian Centre of 

Endemism 

Among the target species, Gray-backed Hawk and Black Hawk-Eagle demand 

special attention from conservationists. Gray-backed Hawk is an endangered 

species that is endemic to the Tumbesian Zone and although it is able to use 

degraded and edge habitat, in Ecuador its population is declining due to land 

use changes (Vargas 1995; BirdLife International 2012). Given the increased 

insularity of forest fragments in western Ecuador, conservation of the species 

population in Peru might prove vital for its long term persistence. The Black 

Hawk-Eagle has a wide distribution within the neotropics, ranging from southern 

Mexico to northern Argentina and the central and west part of South America 

(BirdLife International 2012). Its population is decreasing due to habitat loss 

(BirdLife International 2012), and it may be facing a major threat west of the 

Andes in Peru and Ecuador, where it might be particularly sensitive to forest loss 

above 600 m asl.   

In the last 60 years, habitat loss in the Tumbesian zone has been serious. It is 

estimated that in Tumbesian Ecuador, only 5% of the original forest cover 

remains (Dodson and Gentry 1992). In Tumbesian Peru, habitat loss and 

fragmentation caused by agriculture, cattle grazing and fuel wood extraction has 
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also contributed to forest loss and fragmentation (Ektvedt et al. 2012). Amount 

of habitat and fragmentation are key issues for the conservation of biological 

diversity (Fahrig 2003; Ribeiro et al. 2009). Fragmentation of forests and 

isolation of remaining forest patches in the Tumbesian Centre of Endemism 

might replicate that occurring in the Atlantic coastal forests of Brazil, probably 

one of the most endangered ecosystems in the world (da Fonseca 1985; Ribeiro 

et al. 2009). Machalilla National Park, the largest protected area in Tumbesian 

Ecuador, is approximately 250 km away from CANP (Best and Kessler 1995). 

Increased fragmentation might be the most serious challenge for species 

conservation in the Tumbesian zone nowadays, as it will further isolate wildlife 

populations from those occurring north and west of the continent, reducing their 

genetic viability and leading to local extinctions (Soulé and Simberloff 1986; 

Terborgh 1992). This is not only relevant for raptors, but for other endemic and 

threatened species like parrots and mammals that also occur in this area 

(SERNANP 2011).  

Although current rates of habitat loss in Ecuador have decreased, in Tumbesian 

Peru is on the rise (Ektvedt et al. 2012; World Bank 2012). In the Tumbesian 

Centre of Endemism small, isolated forest patches remaining at lower altitudes 

west of the Andes that are surrounded by secondary forests contribute to 

maintain connectivity between larger forest patches, yet may be subject to 

further conversion as demand for productive soils increases (Becker and Agreda 

2005). Although raptors may have greater dispersal abilities that other bird taxa, 

fragmentation can affect availability of prey and nesting sites (Thiollay 1996). 
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Protection of these forest patches might be vital to maintain connectivity 

between sub populations as they may act as stepping stones for individuals, 

fostering their dispersal and preventing inbreeding that leads to extinction 

(Schaffer 1981; Palomares et al. 2012). Management of matrix habitat 

surrounding forested patches through reforestation of critical areas (i.e. river 

margins) and the establishment of corridors including public and private lands 

can also enhance connectivity between isolated forest patches and prevent 

further extinction of species (Simberloff et al. 1992; Baum et al. 2004). 

At a broader scale, habitat degradation and fragmentation in the Tumbesian 

Centre of Endemism should be targeted through an integrated approach 

implemented collaboratively at both sides of the border. National governments of 

Peru and Ecuador in collaboration with regional and local authorities should 

focus in designing a conservation strategy for Tumbesian forests as a whole. 

This should consider enhanced protection of existing protected areas that act as 

refugia for biodiversity and the preservation of forest patches between them. 

 

7.4 Management recommendations for the NWBR 

Within the NWBR, management efforts should attempt to increase proportion of 

habitats that are particularly threatened by human activities and where there is a 

high prevalence of vegetation parameters that influence the presence of raptor 

species that are rare or threatened in the study area. Habitat management 

interventions that promote additional amounts of vegetation cover or of 

individual tree species within the species realized niches, particularly on the 
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bottleneck axes of CCA, might have direct positive impacts on species 

conservation and in the maintenance of this highly diverse raptor community.   

Cattle grazing as performed in Tumbes National Reserve depends on the 

periodical maintenance and rotation of pastures through controlled burning. 

Cattle ranchers tend to “accidentally” burn remaining forest so more grazing 

areas are created. Given that cattle also feeds on the understory of surrounding 

forest patches, moisture content close to ground level is reduced, increasing risk 

of burning. Destruction of forest for the creation of grazing areas has completely 

removed original forest in vast expanses in the TNR. This might be affecting 

connectivity with populations in southern Ecuador, particularly for small bird 

species like the Black-headed Spinetail (Synallaxis tithys), Henna-hooded 

Foliage-gleaner (Hylocryptus erythrocephalus) and other understory specialists 

(BirdLife International 2012). Abundance of threatened and endemic species like 

that of the Gray-cheeked Parrot (Brotogeris pyrrhoptera) has been reduced in 

fragmented areas inside the TNR where cattle is abundant (SERNANP 2011).   

Management of the NWBR should prioritize effective control by reserve 

authorities during burning of cattle pastures to avoid further destruction of 

remaining forest stands. This should be accompanied by cattle exclusion from 

forest patches adjacent to pastures and from the CANP. The use of exclusion 

fences for cattle for the protection of gallery forests along water courses that 

may act as corridors for wildlife species will help maintain connectivity between 

the TNR and other portions of the NWBR.  
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Initiatives to substitute dependence of local population on extractive activities 

conducted inside the reserve should prioritize the training of local people to 

provide services for tourists, as has been done in the lowlands of Peru and 

Bolivia (Stronza and Gordillo 2008; Jamal and Stronza 2009). Given the 

elevated number of endemic bird species in the NWBR and the relatively easy 

access from the city of Tumbes, bird watching tourism could be promoted. 

Training local young people on bird identification could foster their involvement 

in tourism activities and habitat conservation. However, it is vital that the road 

that connects the town of Pampas de Hospital with El Caucho Research Station 

is periodically maintained, especially after the end of the rains. 

 

7.5 The future for raptor surveys in the NWBR  

In Tumbesian Peru and Ecuador dispersion rate and recruitment of raptor 

species in degraded forests should be evaluated. This should prioritize 

monitoring of Gray-backed Hawks and the Black Hawk-Eagles that might be 

moving from the NWBR towards northwest Ecuador. Additionally it is urgent to 

evaluate breeding, survivorship, recruitment and habitat selection of Gray-

backed Hawks established in the north eastern part of the TNR; particularly 

those individuals located north and west of Cerro Linda Chara, since these 

areas have been greatly degraded due to cattle ranching. Monitoring 

populations of recently reported Solitary Eagles in PNCA (Piana 2011) should 

also be prioritized. 
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7.6 Future research directions in tropical raptor ecology  

Habitat fragmentation is an ongoing process in forested tropical areas of the 

world (FAO 2001; Benhin 2006). It is expected that more species will go under 

threat as their main habitats are reduced in extension (Sayer and Whitmore 

1991; Brooks et al. 1997). This might be particularly relevant for large raptor 

species with large territorial requirements and long reproductive periods such as 

eagles and vultures (Accipitridae and Cathartidae) (Terborgh 1974; Thiollay 

2006). It is important to estimate population sizes of forest-dependant tropical 

eagles, particularly those inhabiting islands that are ongoing rapid fragmentation 

in southeast Asia and those occurring along the Andean slopes of Colombia, 

Ecuador and Peru (Collar 1986; Thiollay 1996; Gjershaug 2006). Habitat 

modelling for these species can provide information on the most relevant habitat 

parameters that influence their presence and thus can help in allocating scarce 

resources (both technical and monetary) more efficiently for their preservation.  

Distance sampling proved to be a useful and easy to implement survey method 

to estimate demographic parameters of raptors in the study area. Compared to 

frequently used raptor abundance index along roads, Distance sampling 

additionally demands measuring the perpendicular distance from individuals to 

transect and this can be easily achieved with a range finder. Given the urgent 

demand to estimate demography parameters of tropical raptors (Bierregard 

1998; Bildstein et al. 1998), Distance sampling should be encouraged among 

researchers aiming to estimated absolute density and population size of tropical 

raptors. 
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