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7.1 Introduction
Important insight into population dynamics can be gained from study-

ing the ways in which survival and fecundity are influenced by the
environmental conditions to which free-living animals are exposed
(Caughley 1977). For birds, understanding the factors that affect survival
can be difficult, because individuals are simultaneously subjected to
many sources of mortality. Further, survival data gathered in the field are
frequently exposed to environmental variables that cannot be controlled
for despite their impact on the response variable. Mixed models have
become an increasingly attractive option for ecologists because they can
address issues associated with random and hierarchical variation. In this
chapter, we introduce the structure of generalized linear mixed models,
and provide a working example using Peregrine Falcon (Falco peregrinus)
nestling survival data.

7.1.1 Generalized linear mixed models
Ecological studies are often subjected to sources of variation that affect

the response variable, but aren’t interesting within the context of the
research questions. Further, this variation is often grouped at different lev-
els within the system that can lead to a lack of independence among
experimental units. For example, ecologists often collect data over several
years, but factors such as food abundance vary from year to year and can
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influence the response variable. As a result, there may be consistent varia-
tion in survival according to the year nestlings are reared. In this case, the

“year effect” on the species may not be of interest, but accounting for it
within the model will preserve assumptions of independence while
increasing fit and predictive power. When the year effect is included as a
random variable in the model, the effect on the response variable is deter-
mined and compensated for by letting other variables of interest vary
according to that effect (for more detail and an example of a simple linear
model that incorporates random effects, see Chapter 1 of Pinheiro and
Bates 2000). In this way, mixed models can be used to address many of
the challenges typically associated with ecological studies.

7.1.2 Fixed vs. random
Due to several competing philosophies and definitions, deciding

whether to treat a certain variable as fixed or random can be difficult (Kreft
and De Leeuw 1998, Gelman 2005). With definitions ranging from how
they are calculated to their level of interest (Gelman 2005), there is not
one universal principle that defines random variables. Assigning variables
as fixed or random can therefore be a subjective task (Schabenberger and
Francis 2001). However, one must ensure that any variable treated as ran-
dom within the model has more than five categorical levels. This is
because random effect estimation attempts to determine among-level vari-
ance, but sufficient levels need to be present to do so accurately and
without error (Bolker et al. 2009). If there are fewer than five levels (as we
see below with our variable “year”), the random variable in question
should be included as a fixed effect (Crawley 2002, Bolker et al. 2009).    

7.1.3 The model for survival
In this chapter we investigate survival of nestlings in which there can

only be two outcomes, a nestling survives = 1, or it dies = 0. This results in
a binomial distribution in our response variable, and we therefore need to
use some form of logistic regression. As noted below, our experimental unit
is the nestling, and each nestling can be organized into the random blocks:

“year” and “nest.” This introduces hierarchical variation, so a logistic mixed
effect model, also termed generalized linear mixed model, is the best struc-
ture for our data. The general structure in matrix notation is:

Equation 7.1
                                                    Y = bX + yZ + e

where Y is a vector containing the response, b is a vector containing the
fixed effect regression coefficients, X represents the vector containing the
predictor variables and their values, y is the random effect, Z represents the
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random effect design matrix, and e represents the error (the variation not
explained by the model). 

Equation 7.2

Y = 

X=

b = 

Equation 7.2 extends the matrix form of the fixed model structure by
incorporating our data. Note that we added notation to indicate the
matching Beta estimates and predictor variables. We can see that the
response variable  is a vector of survival observations for each of our exper-
imental units. Next we have a matrix of predictor variables: hatch order
within the brood, hatch date relative to the rest of the population, and
treatment (whether an individual was food supplemented or not). The
variable “year” has the qualities of a random effect because it can be used
to group our experimental units, however, it’s included in the fixed struc-
ture of the model because it does not have sufficient levels (Bolker 2009).
Looking at Equation 2 we can also see how the categorical variables
HATCH and YEAR are treated within the model. It is unlikely that the
effect of hatching first to fourth is linear and we therefore want to compare
each level of hatch order to a reference. Although R automatically assigns
reference based on either alphabetical or numerical value (first hatch in
this case), we can specify which level of the variable we want as the refer-
ence by using the relevel function (run ?relevel in R for more
information). Year is also treated as a categorical variable with the year
2013 as our reference. If not treated categorically, the year 2013 would be
treated as the value 2,013 and an incorrect effect based on this numerical
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value would be calculated. Both of these categorical variables are converted
to a dummy variable matrix composed of zeros and ones as seen above.
Lastly, we estimate the vector of coefficients (b) for our predictor variables.

Missing from Equation 7.2 is the residual (e), and random portion of
our model (yZ). As seen in Fig. 7.1, random effects are calculated as devi-
ations from the fixed intercept effect (b0). In other words, each level of our
random variable (nests in this case) is assigned a random intercept based
on its estimated effect on survival. These random intercepts are all centered
around the fixed intercept b0 with a mean of zero, and a variance that is
estimated from the nest effect as a whole. One can add complexity to the
random portion of this model by including random slopes, but this is not
necessary given the structure of our data.

The residual portion of the model is a covariance structure that esti-
mates the variation not explained by the model. The residual covariance
can assume different structures that account for a lack of independence in
the data, but in its general form (the form we use in this chapter), the
residual covariance is composed of an identity matrix (a diagonal matrix
made of 1s and 0s) and the conditional residual variance. For more infor-
mation on residual covariance, see Zuur et al. 2009.

7.2 Survival data
The data used in this chapter come from a research program conducted

in the eastern Canadian Arctic around the community of Rankin Inlet,
Nunavut (Court et al. 1989, 1990, Johnstone et al. 1996, Bradley et al.
1997, Franke et al. 2010, Anctil and Franke 2013, L’Hérault et al. 2013,
Anctil et al. 2014), over a four-year period. A total of 270 Peregrine Falcon
nestlings from 84 broods were monitored from hatch to fledge with two
objectives, 1) to determine factors that affect nestling survival, and 2) to
determine whether food is limiting during the brood rearing period. To
better understand the extent of food limitation, a random subset of
broods within the population was food supplemented (n = 40), while the
remaining broods were kept as a control (n = 44). The response variable
in the analysis is the categorical variable survival (1 = survived and 0 =
died), we are including a priori predictor variables based on previous
research conducted on the population (Anctil et al. 2014). These predictor
variables are within-brood hatch order, hatch date relative to the whole
population (0 = the yearly median), within-brood asynchrony (number
of days an individual hatched after their oldest sibling), and a treatment
effect (s = individual was food supplemented, c = individual was not food
supplemented). Additionally, two grouping variables are included in each
model to account for consistent variation within broods (random), and
years (fixed). As in Chapter 6 (this volume), these data are organized in
long format where each variable is represented as a column, and each
data point is represented as a row (Table 7.1).

             130  Hedlin and Franke



7.3 Using the model to estimate survival

The general goal of this analysis is to gather valid inference about
nestling survival during the brood rearing period by using models that best
approximate that process. Because our inference is based on the models
we build and select, the strength of our inference is dependent on how
accurately our top models approximate nestling survival. There are many
methods of building and selecting models, but here we use an information
theoretic (IT) approach as outlined by Burnham and Anderson (2002).
The IT method of model selection differs from traditional null hypothesis
testing in three important ways: 1) it examines multiple models simulta-
neously, 2) it uses measures of parsimony rather than P-values to evaluate
model quality, and 3) inference can be drawn across multiple models to
reduce bias (Symonds and Moussalli 2011).  The process can be divided
into three steps: 1) build a set of a priori candidate models that are eco-
logically justifiable, 2) fit and rank these models according to appropriate
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Figure 7.1 An illustration of random intercepts that vary across nest sites.
Each point represents the log odds of survival across the range of variable X
for a specific nestling, and individuals are grouped according to the brood in
which they were reared (i.e., nestlings of the same color are siblings). Using
this figure, we can see that our random intercepts are deviations around the
fixed effect intercept (b0), and therefore have a mean of zero. The variance
depends on the data, and how diverse the brood effect is across our samples.



IT criteria, and 3) make inferences about nestling survival using parameters
from the top model(s). 

7.3.1 Build a candidate model set
Once a group of predictor variables is established, we begin building

our candidate models. The candidate set (Table 7.2) usually includes a
global model that contains all our predictor variables, followed by models
that include different combinations of our predictor variables and their
interactions. Lastly we include the ‘null’ model without predictor variables.
Note that variable notation in this example candidate set has been
changed to be more descriptive and that we only show fixed effects. 

7.3.2 Fitting and ranking the models
Once we have our list of candidate models, we fit the models with the

glmer function from the package lme4 (Bates et al. 2015) using the syntax
outlined in Table 7.3. Additional information on using this function can
be accessed by running ?glmer. Here we use the default Laplace Approx-
imation to fit the candidate models. Although less accurate in estimating
parameters than the Gauss Hermite Quadrature (both are common
choices), Laplace Approximation is less computationally-demanding and
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Table 7.1. An example of how the data should be organized. Each column
represents one variable, and each row represents one observation.
ID     TREATMENT  SURVIVAL  HATCH   RELHATCH   ASYNCHRONY  NESTYEAR
4b13           s                    1                1                 -2                        0                   4y2013
4g13           s                    1                2                 -1                        1                   4y2013
4bk13          s                    1                3                 0                         2                   4y2013
4r13            s                    1                4                 1                         3                   4y2013
7r13            c                    1                1                 -4                        0                   7y2013
7g13           c                    1                2                 -4                        0                   7y2013
7b13           c                    1                3                 -3                        1                   7y2013
7bk13         c                    1                4                 0                         4                   7y2013
8r13            c                    1                1                 -1                        0                   8y2013
8g13           c                    1                2                 0                         1                   8y2013
8b13           c                    1                3                 2                         3                   8y2013
8bk13         c                    1                4                 3                         4                   8y2013
12r13          c                    0                1                 -1                        0                  12y2013
12g13         c                    0                2                 0                         1                  12y2013
19r13          s                    1                1                 -5                        0                  19y2013
4b13           s                    1                1                 -2                        0                   4y2013
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Table 7.2 Candidate model set for analysis.
     m1 = Survival ~ treatment + asynchrony + hatch + relhatch 

     m2 = Survival ~ relhatch + asynchrony

     m3 = Survival ~ relhatch + asynchrony + treatment

     m4 = Survival ~ relhatch * asynchrony + treatment

     m5 = Survival ~ hatch order + relhatch 

     m6 = Survival ~ hatch order:relhatch + treatment

     m7 = Survival ~ treatment * hatch order 

     m8 = Survival ~ treatment * relhatch 

     m9 = Survival ~ treatment * asynchrony

   m10 = Survival ~ hatch order + treatment

   m11 = Survival ~ relhatch + hatch order + treatment

   m12 = Survival ~ asynchrony + treatment

   m13 = Survival ~ 1

Table 7.3 Various ways in which fixed and random variables can be coded in
the package lme4

Fixed
Effects

TREATMENT Variable with no interaction

TREATMENT : ASYNCHRONY Specifies an interaction between these
two variables

TREATMENT * ASYNCHRONY =
TREATMENT : ASYNCHRONY +
TREATMENT + ASYNCHRONY

Indicates both an interaction and the
two variables without an interaction. 

Random
Effects

(1|NEST) Random intercept at the nest level

(1|YEAR/NEST)=
(1|YEAR)+(1|YEAR:NEST)

Nested random effects with an
intercept varying among years, and
among nests within years.

… + YEAR + (1|YEAR:NEST) Year specified as fixed effect due to
insufficient levels.

(1|REGION) + (1|NEST) When random variables are crossed
rather than nested (such as nests
located in a specific region)



is sufficient for our purposes (see Bolker et al. 2009 for a summary of all
methods used to fit glmms). Additionally, we have included the bobyqa
optimizer to suppress warnings of non-convergence.

To rank our models, we begin by fitting all the models in the candidate list
(see Table 7.2). 

# fit candidate models 
mod1 <- glmer(SURVIVAL ~ TREATMENT + ASYNCHRONY + HATCH +

RELHATCH  + YEAR + (1|YEAR:NESTYEAR), dat,
family = binomial(logit), 
glmerControl(optimizer = “bobyqa”))

mod2 <- glmer(SURVIVAL ~ RELHATCH + ASYNCHRONY +YEAR +
(1|YEAR:NESTYEAR), dat, family = binomial(logit),
glmerControl(optimizer = “bobyqa”))

mod3 <- glmer(SURVIVAL ~ RELHATCH + ASYNCHRONY + 
TREATMENT + YEAR + (1|YEAR:NESTYEAR), dat, 
family = binomial(logit), 
glmerControl(optimizer = “bobyqa”))

mod4 <- glmer(SURVIVAL ~ RELHATCH:ASYNCHRONY + TREATMENT+
YEAR + (1|YEAR:NESTYEAR), dat, family =
binomial(logit), glmerControl(optimizer =
“bobyqa”))

mod5 <- glmer(SURVIVAL ~ HATCH + RELHATCH +YEAR +
(1|YEAR:NESTYEAR), dat, family = binomial(logit),
glmerControl(optimizer = “bobyqa”))

mod6 <- glmer(SURVIVAL ~ RELHATCH:HATCH + TREATMENT +YEAR +
(1|YEAR:NESTYEAR), dat, family = binomial(logit),
glmerControl(optimizer = “bobyqa”))

mod7 <- glmer(SURVIVAL ~ TREATMENT*HATCH +YEAR +
(1|YEAR:NESTYEAR), dat, family = binomial(logit),
glmerControl(optimizer = “bobyqa”))

mod8 <- glmer(SURVIVAL ~ TREATMENT*RELHATCH +YEAR +
(1|YEAR:NESTYEAR), dat, family = binomial(logit),
glmerControl(optimizer = “bobyqa”))

mod9 <- glmer(SURVIVAL ~ TREATMENT*ASYNCHRONY + YEAR +
(1|YEAR:NESTYEAR), dat, family = binomial(logit),
glmerControl(optimizer = “bobyqa”))

mod10 <- glmer(SURVIVAL ~ HATCH + TREATMENT + YEAR +
(1|YEAR:NESTYEAR),dat, family = binomial(logit),
glmerControl(optimizer = “bobyqa”))

mod11 <- glmer(SURVIVAL ~ RELHATCH + TREATMENT + HATCH +
YEAR + (1|YEAR:NESTYEAR), dat, family =
binomial(logit), glmerControl(optimizer =
“bobyqa”))
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mod12 <- glmer(SURVIVAL ~ ASYNCHRONY + TREATMENT +YEAR +
(1|YEAR:NESTYEAR), dat, family =
binomial(logit), glmerControl(optimizer =
“bobyqa”))

mod13 <- glmer(SURVIVAL ~ 1 + YEAR + (1|YEAR:NESTYEAR),
dat, family = binomial(logit),
glmerControl(optimizer = “bobyqa”))

Once we have fitted our candidate models, we can use the model.sel
function from the package MuMIn (Barton 2015) to rank our models by
their second-order Akaike Information Criterion scores (AIC, Akaike 1974)
corrected for small sample size (AICc, Hurvich and Tsai 1989). Founded
on information theory, AIC rewards models for fit, and penalizes them for
each additional parameter. This results in a measure of quality that bal-
ances goodness of fit and parsimony (Burnham and Anderson 2002). It
may be true that a model with every possible factor will fit the data best,
however this may lead to overparameterization and poor predictive ability
(Burnham and Anderson 2002).

# store models in a list
out.put<-model.sel(mod1,mod2,mod3,mod4,mod5,mod6,mod7,mod8,

mod9,mod10,mod11,mod12,mod13)

# build a model selection table
sel.table <-as.data.frame(out.put)[12:16]
(sel.table <- round(sel.table, digits = 2))

# output
df  logLik   AICc delta weight

mod11 10 -119.16 259.18  0.00   0.52
mod1  11 -118.33 259.69  0.51   0.40
mod3   8 -123.50 263.55  4.38   0.06
mod10  9 -123.70 266.10  6.92   0.02
mod12  7 -126.72 267.86  8.69   0.01
mod9   8 -126.35 269.25 10.08   0.00
mod7  12 -123.37 271.95 12.78   0.00
mod5   9 -130.49 279.67 20.49   0.00
mod6  10 -129.89 280.63 21.45   0.00
mod2   7 -134.43 283.29 24.12   0.00
mod8   8 -133.58 283.72 24.54   0.00
mod4   7 -136.47 287.37 28.20   0.00
mod13  5 -157.78 325.79 66.61   0.00
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To properly interpret the summary table, it is important to understand
the values in each column. In column one we simply have the model
names, which correspond to the order in which we entered them into our
list. In column two we can see the number of parameters (normally
referred to as “K”, but here as “df”), followed in column three by the log
likelihood, which is a measure of how well the model fit the data (higher
numbers indicate better fit). Column four shows AICc, which is a calcula-
tion that is driven by log likelihood, but adds a component that penalizes
models for every additional parameter used. Column five shows delta
(short for ΔAICc). This is simply the AICc score of the respective model,
minus that of the best (most parsimonious) model. This column enables
us to easily compare all models to the highest ranked model. Finally, col-
umn six shows the AICc weights, which tell us the likelihood that the
respective model is the best in the set. 

We see model 11 [survival ~ relhatch + hatch order + treatment + year]
ranked highest with an AICc score of 259.18. This model was followed
closely by our global model with all of the predictor variables. If we look
at the log likelihood of these two top models, we can see that our second
best model actually fits our data better (–118.33 vs. –119.16), but received
a penalized AICc score for having an extra parameter. The extra parameter
included in model 1 therefore improved model fit, but not enough to jus-
tify its inclusion. The importance of our predictor variables is apparent due
to the lowest rank assigned to null model. When looking at the delta
(Δ)AICc and AICc weights of our top models, we can now understand the
value of using an information theoretic approach. As is the case with most
ecological processes, predicting nestling survival is complex and the best
approximation of this process seems to lie somewhere between two of our
candidate models. According to AICc, the top two models are nearly
equally as likely (AICc weights of 0.52 and 0.40 respectively), and there-
fore we will want to average parameter estimates between these two. 

Before we move on to parameter estimates, it is important to realize that
all we can conclude so far is that model 11 is the best model within our can-
didate set; this says nothing about how the model actually fits the data. For
linear models, we can calculate the coefficient of determination (R2) to
determine how much of the total variance is explained by the predictor
variables, but this calculation is challenging to implement with mixed
models due to the inclusion of random effects and link functions. Naka-
gawa and Schielzeth (2013) have provided a method of calculating a
similar coefficient for GLMMs (termed R2

GLMM) that is implemented by the
r.squaredGLMM function again using the MuMIn package (Barton 2015). 
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# R2GLMM estimates
r.squaredGLMM(mod11)
# output

R2m       R2c 
0.4391978 0.7355235

r.squaredGLMM(mod1)
# output

R2m       R2c 
0.4400974 0.7328579

r.squaredGLMM(mod3)
# output

R2m       R2c 
0.4138954 0.6909614

The r.squaredGLMM function returns two numbers. The first is the mar-
ginal R2

GLMM which reports the amount of variance explained by the fixed
effects portion in our model, and the second is the conditional R2

GLMM, or
the total variance explained by both the fixed and the random effects of
our model. These values range from 0 to 1, and give us an objective meas-
ure of how our models perform. Not surprisingly, there still seems to be
little difference between our top models, which provides further evidence
that parameter estimates should be averaged. 

7.3.3 Drawing inference from parameter estimates 
After we choose the model(s) that best predict nestling survival, we

investigate the relative relationship of each predictor variable to survival.
Because our top two models were equally parsimonious we will begin by
model averaging our estimates. Model averaging produces parameter and
error estimates that are weighted averages of the values derived from spec-
ified models using AICc weights. Depending on the AICc weights of the
top models, we can model average our estimates in one of two ways. If
support for one model is strong but not indisputable (i.e., AICc weight
>0.90), subset model averaging, where only parameter estimates for vari-
ables in the top model are averaged, is preferred (Burnham and Anderson
2002, Lukacs et al. 2010, Symonds and Moussalli 2011). The second
approach is full model averaging, and is used in cases where evidence of
support is spread across a number of top models. In this case, inference is
drawn from coefficient estimates of all models within the candidate set
and coefficients are weighted by their AICc weight. Details about how
these two calculations differ can be found in Lukacs et al. (2010).
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Although support is not unequivocal for our top model, the combined
weights for our top two is high (cum.wt = 0.92). For this reason, we will
use subset model averaging using the model.avg function in the package
MuMIn.

# averaged Parameter Estimates below a specified �AICc
# threshold

avgmod.95 <- model.avg(out.put, subset = delta  < 2,
revised.var = TRUE)

modavg<-as.data.frame(avgmod.95[“coefficients”])
modavg <- data.frame(modavg[2,])
modavg <- data.frame(t(modavg))
conf<-as.data.frame(confint(avgmod.95))
(modavg <- cbind(modavg,conf))

# output
subset      2.5 %      97.5 %

coefficients..Intercept.  2.7994637  1.1049068  4.49402066
coefficients.RELHATCH    -0.2668755 -0.4812351 -0.05251593
coefficients.TREATMENTs   2.9618739  1.5377233  4.38602461
coefficients.HATCH2      -1.4056421 -2.5291693 -0.28211498
coefficients.HATCH3      -1.7933147 -3.1497185 -0.43691092
coefficients.HATCH4      -3.4205161 -5.4713535 -1.36967861
coefficients.YEAR2014    -1.5739238 -3.3332828  0.18543526
coefficients.YEAR2015    -1.0131320 -2.8596084  0.83334446
coefficients.YEAR2016    -1.6376443 -3.4225639  0.14727531
coefficients.ASYNCHRONY  -0.3457474 -0.8814261  0.18993130

Because our link function is logit (i.e., the calculation required to relate
our predictor variables to response distribution, see Bolker et al. 2009), esti-
mates reported here are Beta values, or slopes of each of our fixed effects in
log odds. This means that for every unit of increase in the value of a param-
eter, the log odds of nestling survival changes by the respective estimate. If
we look at our relative hatch date for example, a nestling’s log odds of sur-
vival decreases by 0.27 for additional day. For the variable treatment we can
see that as the level of this variable changes from control to supplemented,
the log odds of survival increases to 2.96. If we look at the categorical vari-
ables HATCH and YEAR, we can see that each level of the respective variable
has an estimate. This is because each level is being compared to a reference
level. HATCH2, for instance, has an estimate of –1.41, which indicates that
the log odds of survival will change by that amount relative to the reference
(in this case first hatch). Categorical variables such as HATCH and YEAR
lack an estimate value at their reference levels, because survival at these lev-
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els is accounted for within the intercept. We can therefore see that nestling
survival at the reference levels (e.g., first hatched, no food supplementation,
hatched in the year 2013, and hatched at the mean date within the popu-
lation) was relatively high: 2.80.

Model averaged estimates are more accurate than those generated from
the top model alone but model averaging did not result in considerable
change in parameter estimates—perhaps because the second-best model
contained an uninformative parameter (see Arnold 2010 for more details).
Therefore, we use only the top model to visualize our estimates. Here we
use the visreg package (Breheny and Burchett 2013) to plot our fixed
effects as they vary throughout their levels (Fig. 7.2). 

# top model summary
data.frame(Estimate = round(fixef(mod11), 3))
# output         

Estimate
(Intercept)    2.717
RELHATCH      -0.285
TREATMENTs     2.966
HATCH2        -1.489
HATCH3        -2.004
HATCH4        -3.790
YEAR2014      -1.487
YEAR2015      -0.902
YEAR2016      -1.558

# visualize parameter estimates
graphics.off()
windows(6,10)
par(mar=c(0,2,2,0),mai=c(0.3,0.3,0.3,0.3),

mfrow=c(3,2),mgp=c(1.5,0.5,0))
visreg(mod11, type = “conditional”, 

cex.lab = 1, cex.axis=0.75,
pch=19,
font.lab=2,
bty=”l”,
tck=0.01)
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Figure 7.2. A display of the parameter estimates for the four fixed variables
from our top model. Here we can see the log odds of nestling survival (y axis)
across the range of each variable (x axis).
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We can now draw inferences with regard to nestling survival within our
population. We see that hatching early provides a substantial advantage in
nestling survival, a pattern that is consistent across a variety of bird species
(Verhulst and Nilsson 2008). We can see that food supplementation causes
a considerable increase in the log odds of survival, which provides evi-
dence for food limitation during the brood rearing period. We can also see
that although there is little difference in survival between hatching second
and third, there is a large negative difference between hatching first and
last. Finally, we can see the variation in survival among the four years in
which data were collected. Although variation in survival among years was
not related to our research questions, it was correct to include year as a
fixed effect because it explained variation in nestling survival in our study. 

The objectives of this analysis were to firstly determine which factors
influence nestling survival in a population of Peregrine Falcons near
Rankin Inlet, Nunavut, Canada, and to investigate how these factors relate
to survival. Secondly, we were interested in testing whether food was lim-
iting during the brood rearing period. Given the positive parameter
estimates of supplementation within our top model, we can conclude that
evidence exists to show that food is indeed a limiting factor. 

So far it has been convenient to present our estimates as log odds
because: 1) no conversion is required because we are using a logit link
function, and 2) relationships are easy to visualize in log odds because it
is linearized (i.e., a one unit difference in the predictor equals one unit
change in the log odds estimate), but it may be easier to view our param-
eter estimates in real world scenarios if we convert them to survival
probability.  Using the section of code below (UCLA  Statistical Consulting
Group: 2017), we use our top model to investigate how the predicted
probability of survival differs for control and supplemented individuals
across hatch order and relative hatch date. This involves letting survival
vary across relative hatch date for both of our experimental groups, while
holding hatch order constant at each level. This exercise is complicated by
the fact that our random effect is also influencing survival. To include this
group level variation, we average the change in survival probability across
our groups (nests) as they progress from early to late hatch dates (UCLA
Statistical Consulting Group: 2017). After we subset and plot these mar-
ginally averaged survival probabilities by hatch order, we produce a figure
that depicts the combined effects of hatch order, food supplementation,
and hatch date on survival (Fig. 7.3).  
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# get predicted probabilities across hatch and relhatch
# Predicted control probabilities 

control<-subset(dat,TREATMENT==”c”)
tmpdatc <- control[, c(“RELHATCH”, “HATCH”, “NESTYEAR”,

“YEAR”)]
jvaluesc<- with(control, seq(from = min(RELHATCH), to =

max(RELHATCH)))
mc <-glmer(SURVIVAL ~ RELHATCH + HATCH + YEAR +

(1|YEAR:NESTYEAR), dat, family=binomial(logit),
glmerControl(optimizer = “bobyqa”))

# calculate predicted probabilities and store in a list
biprobsc <- lapply(levels(control$HATCH), 

function(stage) {
tmpdatc$HATCH[] <- stage
lapply(jvaluesc, function(j) {

tmpdatc$RELHATCH <- j
predict(mc, newdata = tmpdatc, type = “response”)

})
})

# get means and quartiles for all jvalues for each level of
# hatchorder

plotdat2c <- lapply(biprobsc, function(X) {
tempc <- t(sapply(X, function(x) {
c(M=mean(x), quantile(x, c(.25, .75)))
})) 
tempc <- as.data.frame(cbind(tempc, jvaluesc))
colnames(tempc) <- c(“PredictedProbability”, “Lower”,

“Upper”, “RELHATCH”)
return(tempc)

})
plotdat2c <- do.call(rbind, plotdat2c)
plotdat2c$HATCH <- factor(rep(levels(control$HATCH), 

each = length(jvaluesc)))

# See online for supplemented code

# build the plot
# set graphical parameters

graphics.off()
windows(6.5,6)

par(mar=c(0,1,1,0),oma=c(5,5,3,3),mfrow=c(2,2),mgp=c(1.5,
0.5,0))
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# Plot probabilities for FIRST hatch individuals
plotdat2c1<-subset(plotdat2c,HATCH==”1”)
plotdat2s1<-subset(plotdat2s,HATCH==”1”)

plot(plotdat2c1$PredictedProbability~plotdat2c1$RELHATCH,
pch = 16,col = rgb(1,.5, .5,0.0),
bty = “l”,cex = 2,xaxt = “n”,yaxt = “n”,las = 1,
xlim=c(-7,11),ylim=c(0.0,1.0))

lines(plotdat2c1$PredictedProbability ~ 
plotdat2c1$RELHATCH,lwd = 1.5,lty = 2,col = 
rgb(0,0,0,1))

polygon(c(rev(plotdat2c1$RELHATCH),plotdat2c1$RELHATCH), 
c(rev(plotdat2c1$Lower),plotdat2c1$Upper), 
col = rgb(0,0,0,0.05),border = NA)

lines(plotdat2s1$PredictedProbability ~
plotdat2s1$RELHATCH,lwd = 1.5,col = rgb(0.0,0,0,1))

polygon(c(rev(plotdat2s1$RELHATCH),plotdat2s1$RELHATCH), 
c(rev(plotdat2s1$Lower),plotdat2s1$Upper), 
col=rgb(0,0,0,0.05),border = NA)

axis(1, at = seq(-7,11,2),tcl = -0.3,lwd = 1, tck = 
0.01,labels = FALSE,cex.axis = 0.9)

axis(2,at = seq(0,1,0.2),tcl = -0.3,las = 1,lwd = 1, 
tck = 0.01, cex.axis = 0.95)

legend(-6.4,0.3,cex = 0.8,legend =” Supplemented”,bty =
“n”,lty = 1,lwd = 1,col = c(rgb(0,0,0,1)))

legend(-6.4,0.25,cex = 0.8,legend = “Control”,bty =
“n”,lty = 2,lwd = 1,col =c (rgb(0,0,0,1)))

text(8,0.95,cex=1,labels=”a)”,bty=”n”)
# see online for second, third and fourth hatch # visuals

From Fig. 7.3 we can see that for both control and supplemented indi-
viduals at all hatch positions, survival starts relatively high at early hatch
dates. Survival probabilities then decline as individuals hatch progressively
later in the season. By plotting marginal survival probabilities, we can visu-
alize how supplemental food increases survival across the range of dates
and hatch orders. We can see that as individuals hatch later within the
brood and later in the season, the difference between supplemented and
control individuals gradually decreases. One might conclude that the accu-
mulated consequences of hatching late begin to overwhelm the buffering
effect of supplemental food. In other words, there is little difference
between the supplemented and control nestlings that hatch both last in
the brood and late in the season because the supplemental food is not
enough to overcome the disadvantage of hatching last. This implies a
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Figure 7.3. A comparison of marginal survival probabilities between control
and supplemented nestlings across the range of hatch order, and relative
hatch date for all years combined. Hatch order is indicated alphabetically
starting at Hatch 1 = a, and ending with hatch 4 = d.
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strong relationship between hatch date and food limitation, something
that should be explored with further work. 

We conclude this chapter by reiterating that although mixed models are
becoming a widely used tool, they are complex and difficult to implement
correctly. We introduced a relatively simple example of how they can be
used to address hierarchical variation in nestling survival analysis, but we
cannot possibly cover the full range of possibilities for these models. We
recommend further reading to explore the concepts introduced here (Pin-
heiro and Bates 2000, Gelman and Hill 2007, Jiang 2007, Bolker 2008,
Zuur et al. 2009).
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