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Introduction

Estimating site occupancy is an essential component of any monitoring
program because changes in occupancy over time can serve as a metric of
population status (MacKenzie et al. 2003). Detection is often imperfect dur-
ing occupancy surveys, however, and estimating the proportion of occupied
sites without accounting for detection error can lead to an underestimation
of occupancy (Kéry and Schmidt 2008). Hierarchical occupancy models
have become a popular tool to address such issues because they provide a
framework for estimating parameters that drive occupancy while account-
ing for detection probability that is <1 (Marsh and Trenham 2008).

In this chapter we use a simulated data set that includes survey obser-
vations for 30 Gyrfalcon breeding sites across 20 years. The goal of this
analysis is to gain a better understanding of the observed patterns of yearly
occupancy in this simulated sample population, and to derive parameters
of occupancy that tell us about population status using the multi-season
occupancy model outlined in MacKenzie et al. (2003).

Occupancy model

The multi-season occupancy model is said to be hierarchical because it
is composed of two submodels: 1) a model that describes the occupancy
state, and 2) a model that describes the detection process (i.e., our obser-
vations in the field).
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Occupancy state model

There are only two possible outcomes regarding occupancy (a site is
either occupied or not), and we therefore have a two-level, or binary,
response variable (i.e., a Bernoulli trial). We could use logistic regression
(see Chapter 6) to determine factors that influence the probability of occu-
pancy within a year, but we can gain valuable inference regarding
population status by examining occupancy changes over many years. To
do this we model a series of Bernoulli trials.

The structure of this occupancy model is based on the metapopulation
model proposed by Hanski (1998) and uses the parameters colonization
(v) and extinction (&) to explain changes in annual occupancy. We note
here that many sources use the term survival probability (¢), or the prob-
ability that a site remains occupied across two consecutive years, rather
than the term extinction. However, extinction is merely the inverse of sur-
vival (¢ = 1 - ¢ ) and thus both terms can be used interchangeably.

Because colonization and extinction in the current year are dependent
on the previous year’s occupancy state, this model requires a third param-
eter that describes the probability of occupancy in the first year (). When
combined, these three parameters describe a time series process that
begins with initial occupancy probability (), followed by occupancy that
is driven by colonization and extinction rates, as follows:

If we let z indicate the occupancy state of site i at time t = 1 (i.e., the first
survey year), our model begins with:

z;1 = Bernoulli(vp;;)

Following the first year, the occupancy state at ¢ = 2 is:

ziy = Bernoulli(z; ;1 ¢j + (1 -2 1) Vir)

We have two components in this second year Bernoulli trial: 1) the
probability of survival given occupancy in the previous year: z; ,_ ¢;;, and
2) the probability of colonization given the site is unoccupied in the first
year: (1 -z;,_1)Y;. In other words, if site i was occupied in year 1 and we
therefore substitute z; ,_; with 1, we get an occupancy probability that is
fully dependent on the probability of survival:

zjy~Bernoulli(1 * ¢+ (1 - 1)y,
Or
zip~ Bernoulli(1 * ¢;) + (1L—17;,
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If site i is unoccupied at t; (z;,_ = 0) then we get an occupancy probability
that is described only by the probability of colonization:

ziy~Bernoulli(0 * ¢; + (1 - 0)y;;
Or
zjp~ Bernoulli(0 =47 + (1)v;

This is because a site can only be colonized if it is unoccupied at t-1. By
applying this model to our observed data, we can obtain estimates of
annual colonization (i.e., an unoccupied site becomes occupied), extinc-
tion (i.e., an occupied site becomes unoccupied), and survival (i.e., an
occupied site remains occupied), but would also like to investigate
whether certain covariates are influencing these parameters. We accom-
plish this by linking specific covariates to each of the three parameters
using a logit link function. All combined, our state occupancy model (Fig.
10.1) can be summarized as follows:

year specific year specific
Covariate A Covariate A
site specific | ‘
Covariate C Logit Logit

%
\Il initial occupancy LOg/t Lolgll’
(I) survival (1 - ) Covariate B Covariate B
year specific year specific

’Y colonization

Figure 10.1 An illustration of the occupancy state model. As displayed,
covariates are linked to initial occupancy, survival, and colonization using logit
link functions. Following the first season (initial occupancy), the model can
follow one of two pathways depending on the current season’s occupancy
state. If a site is occupied in the current season (1), occupancy in the following
season depends on the probability of survival (or conversely, 1 - the
probability of extinction). If a site is unoccupied, occupancy in the following
season is dependent on the probability of colonization.
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Observation process

It is unrealistic to assume a perfect detection rate when surveying for
Gyrfalcon occupancy. Many factors can contribute to detection error, and
it is therefore important to include a submodel that accounts for such error.
For detection rate to be assessed, each site must be surveyed more than
once in each year to construct a detection history (Table 10.1, Fig. 10.2).

Occupancy modeling assumes that there are no false positives (i.e., indi-
cating that a site is occupied when the true state is vacant), and the
detection model is therefore dependent on the outcome of the occupancy
state. If we let y;; denote the detection at site i during survey j in year ¢, then:

Vije = Bernoulli (zitpijt)

where z;; is the occupancy state at site i in year t, and pj; is the detection
probability. Based on this equation, it is again not possible to detect occu-
pancy if the true state is zero (i.e, z;; = 0), and thus one of the assumptions
of the detection submodel is that there are no species misidentifications.
If one is concerned about species misidentification, we point the reader to
Miller et al. (2011). As with the parameters in the occupancy state model,
detection probability may vary according to covariates. We can again use
a logit link function to assess the relationship between covariates and
detection probability.

Assumption of closure

The goal of this analysis is to determine how occupancy changes among
primary sampling periods (i.e., years), however an important assumption
of this analysis is that true occupancy doesn’t change within each primary
sampling period. If, for example, a breeding site is found to be occupied
during the pre-laying and incubation periods, but then the nest fails and
the adults either leave the breeding area or become less conspicuous,
detection probability in all of the following surveys will decrease consid-
erably. If this occurs frequently enough, detection probabilities become
biased and cause overestimation of occupancy parameters (Rota et al. 2009,
Kendall et al. 2013, Otto et al. 2013).

The violation of closure is a relatively common issue, and a number of
methods have been proposed to relax this assumption (Bailey et al. 2014).
One way to address closure is to conduct additional surveys within each
secondary sampling period, which would re-assign the assumption of clo-
sure to a shorter period when closure could be confidently assumed
(Williams et al. 2002, Rota et al. 2009). In adapting this method to the sur-
vey scheme we've proposed in this chapter (Fig. 10.2), one would have to
conduct at least twice as many surveys per year (a minimum of two surveys
within the pre-laying, incubation, and brood rearing periods).
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Such increases in survey effort may not be feasible given the logistical
issues associated with Gyrfalcon occupancy surveys. An appealing alterna-
tive is to introduce additional model parameters that indicate an
individual’s entry to, and exit from, the primary sampling period (Kendall
et al. 2013). This provides the boundaries within which detection is pos-
sible, and thus reduces the bias caused from the violation of closure.
Although we do not include these methods here, we recommend that users
consider the assumption of closure in their study design.

Data

Here we examine the simulated occupancy history of 30 Gyrfalcon nest-
ing territories over a period of 20 years. We generated the data within a
surveying scheme that assumed each site was visited three times per year
with the first visit occurring during the pre-laying period, the second during
incubation, and the third during brood rearing (Fig. 10.2). We introduced
three levels of covariates: 1) site-level covariates that vary among sites and
relate to initial occupancy (), 2) year-specific site-level covariates that
describe colonization and extinction rates (y and ¢), and 3) observation
covariates that vary across site, year, and survey to describe the detection
process (p). Site-level covariates included distance from a nest site to
anthropogenic disturbance (e.g., road; to test whether distance to distur-
bance influenced occupancy), the slope of the nesting cliff, the horizontal
length of the nesting cliff, the distance to water, and the distance to the
nearest neighbor. Year-specific site covariates (i.e., site covariates that
changed among years) included the presence of a camera with ten cameras
deployed each year, ptarmigan abundance, and lemming abundance. We
included two observation covariates, one that indicated whether a survey
was completed during the morning (A =9 a.m. to 12 p.m.), midday (B =
12 p.m. to 3 p.m.), or afternoon (C = 3 p.m. to 6 p.m.), and a second that
identified the survey period: pre-laying (pl), incubation (in), or brood rear-
ing (br).

Although we need to format our data when we import it into R, we can
start with a single spreadsheet that includes all of the information we
would like to model. Each row of this spreadsheet contains data that relate
to a specific Gyrfalcon nesting territory (labeled sitel to site30), and the
information in each column depends on the matrix it is in. The observa-
tion matrix and the related observation covariate matrix has I rows with
T*m columns where [ is the total number of sites, T is the total number of
years, and m is the total number of surveys conducted per site per year
(Table 10.1 and Fig. 10.2). Each site-level covariate is a vector of length i
(Table 10.2), and year-specific site-level covariates are matrices with I rows,
and T columns (Table 10.3).
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Table 10.1 An example of the observation matrix where 1 = detected
occupancy, and 0 = no detected occupancy. The observation covariate matrix
is similar in structure, but is composed of information relating to each
observation (i.e., the time of day the observation occurred).

Year 1 Year 2 Year 3 .o t

Obs1 Obs2 Obs3 Obs1 Obs2 Obs3 Obsl Obs2 Obs3 j
Sitel O 0 0 0 0 0 0 0 0 . A
Site2 1 0 0 0 0 0 0 0 0 e b2
Site3 0 0 1 1 1 0 0 0 0 oo t)3

Site; 1,1, 1,20 1,3 21, 22i 23i 31i 32i 33i .. {ti

Table 10.2 Site-level covariates used to model initial occupancy. Each
covariate is a single vector of values that apply to specific sites.

Slope
Site1 70
Site2 45
Site3 58
Site; Slope;

Table 10.3 An example data table of year-specific covariates that indicates
whether a motion-sensitive camera was present in a given year.

Year1 Year2 Year3 t
Site1 no no no t,1
Site2 no yes no t,2
Site3 yes yes yes .. t,3

Site; 1,i 2,i 3, t,i
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Analysis

Before we can start fitting occupancy models, we need to organize and
transform our data. We will use the package Unmarked (Fiske and Chan-
dler 2011) in R (R Core Team 2016) for our analysis, and this package
requires that our data are coerced into a unique type of data frame to fit
our models. We first extract all of the model components so we can organ-
ize them.

# extract covariates from our data

yMat <- occdat[,2:61] # detection matrix

cam <- occdat[,87:106] # camera presence

year <- as.character(1996:2015) # year Matrix

year <- matrix(year, nrow(occdat), 20, byrow=TRUE)
time <- occdat[,147:206] # survey time (within day)
season <- occdat[,207:266] # survey time (within season)
dtw <- occdat$dtw # distance of nest to water
cl.slope <- occdat$c.slope # cliff slope

dtn <- occdat$dtn # distance to nearest territory
cl.length<- occdat$c.length # cliff horizontal length
disturb <- occdat$disturb # distance to disturbance
lem <- occdat[,107:126] # lemming abundance

ptar <- occdat[,127:146] # ptarmigan abundance

The next step is to transform some of the variables. Standardization of
variables like ‘dtn’ that vary widely (468m to 3838m) can improve our
model convergence in subsequent steps. Standardization consists of rescal-
ing the variable’s range by subtracting the mean and dividing by the
standard deviation. Such transformations make the variable more numer-
ically manageable throughout the model fitting process. Note that we do
not show the standardization for all variables; see Online Appendix 10.1
for more details.

# scale variables to improve the model fitting process

# distance to disturbance
dist.sc <- as.data.frame((disturb -
mean(disturb)) / sd(disturb))
# renames variable to “disturbance”
names (dist.sc)[names(dist.sc)=="(disturb -
mean(disturb)) / sd(disturb)”] <- “disturbance”
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# cliff slope
cl.slope.sc <- as.data.frame((cl.slope -
mean(cl.slope)) / sd(cl.slope))
# renames variable to “cliff.slope”
names(cl.slope.sc)[names(cl.slope.sc)=="(cl.slope -
mean(cl.slope)) / sd(cl.slope)”] <- “cliff.slope”

# cliff length
cl.length.sc <- as.data.frame((cl.length -
mean(cl.length)) / sd(cl.length))
# renames variable to “cliff.length”
names(cl.length.sc)[names(cl.length.sc)=="(cl.length
- mean(cl.length)) / sd(cl.length)”] <- “cliff.length”

# distance to water
dtw.sc <- as.data.frame((dtw - mean(dtw)) / sd(dtw))
# renames variable to “dtw”
names (dtw.sc) [names (dtw.sc)=="(dtw -
mean(dtw)) / sd(dtw)”] <- “dtw”

# distance to neighbour
dtn.sc <- as.data.frame((dtn - mean(dtn)) / sd(dtn))
# renames variable to “dtn”
names (dtn.sc) [names(dtn.sc)=="(dtn -
mean(dtn)) / sd(dtn)”] <- “dtn”

Now that our variables have been extracted and standardized where nec-
essary, we need to organize them into the unique data frame required by
Unmarked. We do this by grouping our covariates into data frames accord-
ing to their type. In this example we have 3 types, 1) site-level covariates,
2) year-specific site covariates, and 3) observation covariates.

# site level covariates
s.covs <- data.frame(
disturbance = matrix(t(dist.sc), ncol=1l),

cl.slope = matrix(t(cl.slope.sc), ncol=1l),
cl.length = matrix(t(cl.length.sc), ncol=1l),
dtw = matrix(t(dtw.sc), ncol=1l),

dtn = matrix(t(dtn.sc), ncol=1l)
)
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# year-specific site covariates
year.covs <- data.frame(

cam = matrix(t(cam), ncol = 1),
year = matrix(t(year), ncol = 1),
ptar = matrix(t(ptar.sc), ncol = 1),
lem = matrix(t(lem.sc), ncol = 1)

)

# observation covariates
obs.covs <- data.frame(
day = matrix(t(time),ncol = 1),
season = matrix(t(season),ncol = 1)

)

The next step is to use the unmarkedMultFrame function to coerce the
data into the unique data frame required to fit the models.

# prepare data for analysis
gyrUMF <- unmarkedMultFrame (
y = yMat, # detection matrix
siteCovs = s.covs, # site level covs
obsCovs = obs.covs, # observation covs
yearlySiteCovs = year.covs, # site-year covs
numPrimary = 20 # number of seasons

)

# summary of our covariates and plot of yearly occupancy
summary (gyrUMF)
plot (gyrUMF)

Note that although we are using three types of covariates in this example,
the minimum information needed to fit occupancy models in an
unmarkedMultFrame is the observation matrix (y), and the specified num-
ber of years in which observations were gathered (numPrimary).

The next step in this analysis is to begin fitting models. The model struc-
ture used in the function colext requires specifying the four parameters
and indicating the data source. Here is the null model that specifies con-
stant parameter estimates across all years (i.e., the colonization, extinction,
and detection probabilities are the same across all 20 years).
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# initial (i.e., first-year) occupancy, colonization,
# extinction, detection

m0 <- colext(psiformula = ~1, # lst-year occupancy
gammaformula = ~1, # colonization
epsilonformula = ~1, # extinction
pformula = ~1, # detection
data = gyrUMF # data source

)

It is unlikely that colonization and extinction probabilities remain static
across all 20 years, and we are interested in determining which of our
covariates best describe the observed occupancy. To do this, we must build
a set of candidate models that each test a particular hypothesis that is eco-
logically justifiable. As in Chapter 6, we use an information theoretic
approach to rank our models according to Akaike’s Information Criterion
(AIC; Akaike 1974). A model’s AIC score is driven by how well it fits the
observed data, but is penalized according to the number of parameters
within the model (a measure of parsimony). Ecological studies using AIC
for model selection often use a correction factor to account for small sam-
ple size (Hurvich and Tsai 1989, Burnham and Anderson 2002), but
because sample size is not known in dynamic occupancy models we leave
this correction factor out.

# block 1: initial (i.e., first year) occupancy, coloniza-

# tion, extinction, detection

ml <- colext(~dtn, ~year, ~year, ~day, data = gyrUMF)
m2 <- colext(~dtn, ~ptar, ~year, ~season, data = gyrUMF)
m3 <- colext(~dtn, -1, ~cam, -~year, data = gyrUMF)
m4 <- colext(~disturbance,~year, ~year, ~season,

data = gyrUMF)
m5 <- colext(~disturbance,~ptar, ~cam, ~1,data = gyrUMF)

m6 <- colext(~disturbance,~lem, -~1, ~season ,
data =gyrUMF)

m7 <- colext(~cl.slope, ~year, ~year, -~day,
data = gyrUMF)

m8 <- colext(~cl.slope, ~1, ~cam, ~season,
data = gyrUMF)

m9 <- colext(~cl.slope, ~lem, -~1, ~year,
data = gyrUMF)

ml0<- colext(~cl.length, -~year, ~year, -1,
data = gyrUMF)

mll<- colext(~cl.length, -~ptar, ~cam, -~season,

data = gyrUMF)
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ml2<- colext(~cl.length,

data = gyrUMF)

ml3<- colext(~dtw, ~1,

ml4<- colext(~dtw, ~ptar,
ml5<- colext(~dtw, ~lem,

~lem, -~1,
~cam, ~day,
~1, ~year,
~year, ~1,

# block 2: coerce models into a list

m.rank <- fitList(

‘dtn.year.year.day’

‘dtn.ptar.year.season’

‘dtn.-.cam.season’

‘disturb.year.year.season’
‘disturb.ptar.cam.-"’

‘disturb.lem.-.season’

‘slope.year.year.day’

‘slope.-.cam.season’

‘slope.lem.-.year’

‘length.year.year.-’

‘length.ptar.cam.season’

‘length.lem.-.year’

‘dtw.-.cam.day’

‘dtw.ptar.-.year’

‘dtw.lem.year.-’

)

# block 3: rank models in the

modSel (m.rank)
# output

dtn.ptar.year.season
length.ptar.cam.season
slope.-.cam.season
disturb.lem.-.season
disturb.ptar.cam.-
dtn.-.cam.season
dtw.ptar.-.year
dtw.lem.year.-
dtw.-.cam.day
dtn.year.year.day
length.lem.-.year
disturb.year.year.season
slope.lem.-.year
length.year.year.-
slope.year.year.day

nPars
26

25
25
24

43
25
43
25
41
43

list

AIC
1438.18
1444.84
1451.28
1451.46
1453.20
1456.65
1457.717
1460.51
1461.01
1464.65
1464.81
1465.91
1465.94
1471.69
1475.10

delta

0.

6.
13.
13.
15.
18.
19.
22.
22.
26.
26.
27.
27.
33.
36.

00
66
10
28
03
48
59
34
83
48
63
74
76
51

~year,
data = gyrUMF)
data = gyrUMF)
data = gyrUMF)
=ml,
= m2,
= m3,
= m4,
= m5,
= mé6,
= m7,
= m8,
= m9,
= mlo0
= mll
= ml2
= ml3
= ml4
= ml5
AICwt cumltvWt
9.6e-01 0.96
3.4e-02 1.00
1.4e-03 1.00
1.3e-03 1.00
5.3e-04 1.00
9.4e-05 1.00
5.4e-05 1.00
1.4e-05 1.00
1.1le-05 1.00
1.7e-06 1.00
1.6e-06 1.00
9.1le-07 1.00
9.0e-07 1.00
5.1e-08 1.00
9.3e-09 1.00

92
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The first block of code runs the fitting process for our candidate set, the
second block organizes the models into a list with a designated title, and
the last block produces our model selection output. Going from left to
right in our model selection table, we list the names we provided for each
model in the first column, followed by the number of parameters. Next
we give the AIC score that is used to rank the models (lower score = better
ranking based on parsimony), followed by the ‘delta’, or delta AIC. The
delta is the AIC score of the respective model relative to the top (most par-
simonious) model, and indicates the AIC distance between our top model
and the set. Next we list the AIC weights that range between 0 and 1, and
indicate the likelihood that the respective model is the best in the set. Our
last column is the cumulative weight, which is the summation of our AIC
weights.

From the set of a priori candidate models, our analysis indicates that
the best ranked model included distance to nearest neighbor, ptarmigan
abundance, year, and season (i.e., dtn.ptar.year.season). Moreover, the AIC
weight (i.e., the relative likelihood of a model) of this model is 0.96 and
is therefore likely the best model within the set of candidate models we
proposed. In this model, distance to nearest neighbor best explained the
probability of initial occupancy, whereas ptarmigan abundance best
explained probability of colonization. Extinction probabilities varied
among years, and detection probabilities varied according to the time of
year (prelaying, incubation, and brood rearing).

We can inspect this model in more detail by examining the parameter
estimates. We used a logit link to model each of the parameters using our
covariates, so these estimates are on the log odds scale.

# model coefficients converted to probabilities

estimates <- round(coef(m2),2)
SE <- round(SE(m2),2)
(coef.table <- rbind(estimates,SE))
# output
psi(Int) psi(dtn) col(Int) col(ptar) ext(Int)
estimates 1.15 2.08 -1.56 0.37 -2.44
SE 0.77 1.00 0.15 0.16 1.04
ext(yearl997) ext(yearl998) ext(yearl999)
estimates 1.97 1.12 2.09
SE 1.24 1.28 1.21
ext(year2000) ext(year2001) ext(year2002)
estimates 1.89 2.18 -5.80
SE 1.30 1.38 39.77
ext(year2003) ext(year2004) ext(year2005)
estimates 1.36 3.21 3.68

SE 1.32 1.21 1.54
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ext(year2006) ext(year2007) ext(year2008)

estimates 4.08 2.53 2.05

SE 1.51 1.26 1.27
ext(year2009) ext(year2010) ext(year2011)

estimates 1.43 0.39 1.12

SE 1.35 2.08 1.29
ext(year2012) ext(year2013) ext(year2014) p(Int)

estimates 2.00 1.19 -0.78 0.53

SE 1.24 1.34 3.08 0.15
p(seasonin) p(seasonpl)

estimates 0.0 -0.55

SE 0.2 0.19

We used effects parameterization in our models and each covariate was
therefore fit with an intercept, and an effect or slope. The intercept indi-
cates the log odds of occupancy at the reference level. The reference level
is the mean for continuous variables, and is determined either alphabeti-
cally or numerically for categorical variables (unless stated otherwise using
the relevel function). For example, if we look at our parameter Psi, we
can see that psi(Int), or the intercept for that parameter was 1.15. Distance
to the nearest neighbor (dtn) was the variable used for psi, and because it
is continuous, the intercept indicates that the log odds for initial occu-
pancy was 1.15 at dtn’s mean. Next we have psi(dtn), which is the slope
of the straight line that describes the relationship between log odds of ini-
tial occupancy, and the distance to the nearest neighbor covariate. Log
odds is difficult to interpret, so we can use the plogis function for a quick
conversion to the probability scale. We can see below that when the
psi(int) is converted, the intercept of Psi on the probability scale is 0.76.
In other words, sites located 1774 m (the mean for dtn) away from the
nearest breeding Gyrfalcon had a 76% chance of being occupied in the ini-
tial year of occupancy (see Fig. 10.3).

# convert dtn(int) from log odds to probability
plogis(1.15)
# output
0.76

Recall that dtn and ptarmigan abundance were both standardized to
improve the model fitting process. Therefore, to begin making conclusions
from our parameter estimates, we must first backtransform the covariates
to their original scale. Additionally, visual representation of the parameter
estimates may provide us with a more intuitive depiction of how our
covariates relate to the respective parameters.
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Starting with initial occupancy (), we begin by creating a data frame
that contains the range of values for our scaled dtn variable. We then use
the predict function to add the predicted occupancy probabilities across
the range of dtn. Finally, we convert the standardized dtn values to their
original values and plot the relationship.

# visualize psi across distance to neighbor
nd <- data.frame(dtn = seq(-1.5,2.1,1length = 20))
E.psi <- predict(m2, type = “psi”, newdata = nd,
appendData = TRUE)

# convert distance to neighbor to original scale
E.psi$dtn <- E.psi$dtn * (sd(dtn)) + mean(dtn)

# plot Psi across distance to neighbor
graphics.off ()
windows(7,5)
par(mar = c(4,4.8,0.7,2.1),mgp = ¢(1.8,0.2,0))

with(E.psi,
{
plot(dtn, Predicted, ylim = ¢(0,1.1), type = “n”,
xlab = “Distance to Neighbour (m)”,
ylab = expression(hat(psi)),las = 1,
xaxt = “n”,yaxt = “n”, bty = “1”,font.lab = 2)
lines(dtn, Predicted,lwd = 1)
lines(dtn, Predicted + 1.96*SE, col = rgb(0,0,0,0.4))
lines(dtn, Predicted - 1.96*SE,col = rgb(0,0,0,0.4))
axis(1l, at = seq(500,3500,500), labels =
seq(500,3500,500) ,tck = 0.02,cex.axis = 0.75)
axis(2, at = seq(0,1,0.1), labels = seq(0,1,0.1),
las = 1,tck = 0.02,cex.axis = 0.75)
)

The resulting output (Fig. 10.3) indicates that the probability of occupancy
at a site is relatively low if there is another occupied site nearby. Occupancy
probability increased with nearest neighbor distance, and becomes asymp-
totic between 2,000 and 2,500 m.

Because ptarmigan abundance was also standardized, we can use the
code above to plot colonization probability. Although more subtle, we see
a positive relationship between ptarmigan and colonization probability
(Fig. 10.4).
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Figure 10.3 A visualization of how initial occupancy probability changes
across the range of our ‘territory proximity’ variable in our top model. In the
first year of this study, the close proximity of occupied territories negatively
influenced occupancy.
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Figure 10.4 A visualization of how increasing ptarmigan abundance
influences colonization probability.
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Visualizing initial occupancy probability and colonization within the
context of their respective covariates is useful, but our objective was to
obtain some inference about population status by determining occupancy
across the 20 years for which data were collected. We can approach this by
first plotting colonization and extinction rates across that time period.

# plot extinction and colonization probabilities across year
# new data frame to store extinction/colonization probs
nd <- data.frame(year = c(‘yearl1997’ , ‘yearl998’ ,
‘year1999’ , ‘year2000’ , ‘year2001’ , ‘year2002’ ,
‘year2003’ , ‘year2004’ , ‘year2005’ , ‘year2006’ ,
‘year2007’ , ‘year2008’ , ‘year2009’ , ‘year2010’ ,
‘year2011’ , ‘year2012’ , ‘year2013’ , ‘year2014’ ,
‘year2015"))
# use predict function get extinction, colonization, and
# survival probs across year
E.ext <- predict(ml, type = ’‘ext’, newdata = nd)
E.col <- predict(ml, type = ‘col’, newdata = nd)
# not plotted, this is how we get survival probs
E.surv <- 1-E.ext

#plot colonization and extinction across years
graphics.off()
windows (7,6)
par(mar=c(4,4.8,0.7,2.1) ,mfrow=c(2,1),mgp=c(1.5,0.2,0))

with(E.ext,
{
plot(1:19, Predicted, pch =1, xaxt = ‘n’, xlab = ‘Year’,
ylab = expression(paste(‘Extinction Prob (
‘,epsilon,’ )’)),las =1,
ylim = ¢(0,1),font.lab = 2,tck =0.03,
cex.axis = 0.75)

axis(1l, at = 1:19, labels = seq(1997,2015,1),
tck = 0.03 , cex.axis = 0.75)
lines(1:19, Predicted, col=rgb(0,0,0,0.8),1lty=2,1lwd=2)
arrows(1:19, lower, 1:19, upper, code=3, angle=90,
length=0.03, col=rgb(0,0,0,0.2))
)

with(E.col,
{
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plot(1:19, Predicted, pch = 1, xaxt = ‘n’,xlab = ‘Year’,
ylab = expression(paste(‘Colonization Prob (
‘ygamma,’ )')),
ylim = ¢(0,1),las = 1, font.lab = 2,tck = 0.03,
cex.axis = 0.75)
lines(1:19, Predicted, col = rgb(0,0,0,0.8),
lty = 2,1wd = 2)
axis(l, at = 1:19, labels = seq(1997,2015,1),
tck = 0.03,cex.axis = 0.75)
arrows(1:19, lower, 1:19, upper, code = 3, angle = 90,
length = 0.03, col = rgb(0,0,0,0.2))
})

The resulting output (Fig. 10.5) displays the variation in colonization
and extinction by year, and gives us a better idea of dynamics as they are
driven by these two parameters.

To depict yearly occupancy in this population, we project the predicted
proportion of occupied sites across all years (W) using our colonization,
extinction, and occupancy probabilities at time ¢-1 using the following
equation from MacKenzie et al. (2003):

‘ijc = li’t—l (1- ét—l) +(1- 11’t—l) '\A{t—l

where W, is the estimated occupancy probability for a typical site at time ¢,
€..1 is the estimated probability that an occupied site at time -1 becomes
unoccupied at time t, and Y, is the estimated probability that an unoccu-
pied site at time t-1 becomes occupied at time t. The estimated occupancy
probability at each time step (¥;) was automatically calculated during
model fitting, and each of the values for W, were stored within our model
object and can be called using ‘modelname@smoothed’ (in our case we
could code this as m2@smoothed). We also want to estimate the error
around¥,., and use bootstrapping to resample our model for this purpose
(Davison and Hinkley 1997). Finally, we want to plot ¥, along with its
estimated error. To assess the difference between our observations and the
estimation of W;, we've included the proportion of sites occupied based
on our surveys alone (Fig. 10.5).
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Figure 10.5 Colonization and extinction probabilities in the sampled
population over the course of twenty years.
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# visualize difference in estimated and observed occupancy
# observed occupancy does not account for detection error
det <- detHist(m2)
det <- as.data.frame(det[[“out.fregs”]])
observed.props <- det$detected/det$sampled

# estimated occupancy accounts for detection error
#time consuming operation! decrease B if short on time
m2b <- nonparboot(m2, B = 10)
PAO.boot <- as.data.frame(cbind(
smoothed = smoothed(m2b)[2,],
SE = m2b@smoothed.mean.bsse[2,]))
upper <- PAO.bootS$smoothed + 1.96 * PAO.bootS$SE
lower <- PAO.bootS$smoothed - 1.96 * PAO.bootS$SE
PAO.boot <- as.data.frame(cbind(PAO.boot,upper,lower))
years <- seq(1996,2015,1)

# plot the observed vs. estimated occupancy
graphics.off ()

windows(7,5)
par(mar = c(4,4.8,0.7,2.1),mgp = ¢(1.8,0.2,0))

plot(1996:2015,PA0.boot$smoothed, ylim = c(0,1),
las = 1,pch = 16,font.lab = 2,
xlab = ”"Year”, ylab = “Proportion of Occupied Sites”,
bty = ”1”,xaxt = ”"n”,yaxt = ”"n”)
lines(1996:2015,PA0.boot$smoothed,lwd = 1)
points(1996:2015, observed.props,pch = 1)
lines(1996:2015, observed.props,lwd = 1, lty = 2)
arrows(1996:2015, PAO.bootS$Supper, 1996:2015,
PAO.bootS$lower, code = 3, angle = 90,
length = 0.03,col = rgb(0,0,0,0.3))
axis(l, at = seq(1996,2015,2) ,
labels = seq(1996,2015,2),tck = 0.02,
cex.axis = 0.75)
axis(2, at = seq(0,1,0.1),
labels = seq(0,1,0.1),las = 1,tck = 0.02,
cex.axis = 0.75)
legend(“topright”, inset = 0.05,
legend = c(“Estimated”,”Observed”),bty = "n”,
lty = ¢(1,2), pch = ¢(16,1),cex = 0.75)
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Figure 10.6 Estimated probability of occupancy plotted against the observed
proportion of occupied sites. We can see that our observations underestimate
the true occupancy due to detection error.

As we can see, our estimated occupancy probability matches our
observed occupancy quite well (Fig. 10.6). However, throughout the entire
range of years, our estimated occupancy is higher than our observed
because of the detection error estimated in our model. In other words,
determining occupancy without accounting for detection error leads to an
underestimation in this example, and provides evidence for the impor-
tance of including the detection sub-model.

As a final step, we can characterize the overall trend in occupancy at the
population level using the estimated annual occupancy probabilities to
determine the average rate of change in our population as defined by
MacKenzie et al. (2003). We do this by first calculating the change in occu-
pancy (M) between successive study years using the following equation,
and then calculating the average and standard error:

_ li“t+1
W
where A, equals the change in occupancy at time t, W, equals the esti-

mate of occupancy at time t+1, and W, equals the estimate of occupancy
at time t.

A
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# extract lambda across all years.
PAO <- PAO.boot$smoothed
lambda <- rep(NA, times = (length(PAO)-1))
for(i in 1:(length(PAO )-1)){
lambda[i] <- PAO[i+1]/PAO[i]
}

# average lambda and standard error.
mean (lambda)
(SE <- sd(lambda)/sqrt(length(lambda)))

# output
mean (lambda)
[1] 1.042452
(SE <- sd(lambda)/sqrt(length(lambda)))
[1] 0.07260853

Noting that a mean A < 1 indicates population contraction and >1 indi-
cates expansion, we can see that our population is stable at A = 1.04 + 0.07
(standard error).

Conclusions

As demonstrated in this chapter, this analysis provides us with the tools
to assess important drivers of yearly occupancy, and to more accurately
assess long-term status of occupancy at the population-level while
accounting for imperfect detection. Although the estimation of detection
probability is dependent on an increase in survey effort, we feel that it is
an important consideration that produces results that are more represen-
tative of true occupancy. Furthermore, it enables the investigation of
factors that affect survey accuracy, and therefore the adjustment of survey
protocols that maximize occupancy detection.
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